

https://resources.nvidia.com/en-us-inference-resources-ug/?ncid=partn-211406#cid=dl05_partn_en-us

How to Put AI Models Into Production

A Guide to Accelerated Inference

Michael Wharton and Zhangzhang (ZZ) Si

with contributions from Priya Joseph

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

 Manning Publications Co.
 20 Baldwin Road Technical
 PO Box 761
 Shelter Island, NY 11964

Cover designer: Ben Counsell

ISBN: 9781633438613

∞

iii

contents
 foreword iv

 1 A brief overview of AI inference 1
 1.1 Key artificial intelligence terminology 3

 1.2 Modern inference microservices: How we got here 4

 1.3 Inference in classical machine learning 7

 1.4 Inference in deep learning 7

 1.5 Inference patterns 8

 1.6 A modern inference architecture 9

 1.7 Challenges and best practices for inference systems 12

 2 AI inference case studies 15
 2.1 Optimizing and scaling solutions with NVIDIA TensorRT

and Triton 16

 2.2 Inference in natural language processing (NLP) 18

 2.3 Inference in computer vision 21

 2.4 Inference in recommender systems 22

 2.5 Inference in fraud detection 23

iv

contents

 3 AI inference in practice 25
 3.1 Challenges of inference deployment 25

 3.2 Optimize models with TensorRT 28

 3.3 When to use TensorRT 29

 3.4 Deploy inference with Triton Inference Server 30

 3.5 Recipes for different data types 32

 3.6 Recipes for complex inference tasks 40

 3.7 Deployment process and best practices 44

 3.8 Code lab: Deploy inference for reverse image search 51

 4 The AI inference horizon 53
 4.1 Broad AI adoption 53

 4.2 Algorithms 54

 4.3 Regulatory environments 55

 4.4 Additional trends 56

 4.5 Summary 56

v

foreword

There are two parts to AI machine learning: training a model and using the model.

Training AI machine learning and its subset, neural network-based deep-learning mod-

els, has well-established frameworks and processes. It is a focused area in organizations

with dedicated data scientists and ML engineers. They are part of a large community of

developers that has standard frameworks, tools, and processes to help.

But deploying and using the AI model in production is ad hoc in many organiza-

tions. Each team has its own ways. Some are on the public cloud, others run models

on-premise or at the edge. The computing infrastructure varies, too. Some teams might

run their models on standard CPU-based servers while others demand accelerators

like GPUs. Traditional tools and processes used for deploying enterprise applications

are not sufficient. The IT, DevOps practitioners, or software developers do not have

in-depth knowledge of what it takes to put AI models in production environments.

Successful use and growth of AI in an organization needs understanding of all the

facets of AI inference. AI inference uses AI models to make predictions in the produc-

tion environment. In other words, it deploys the trained model and makes it opera-

tional in a product or service. It needs a focused approach with specific hardware and

software considerations like that of a web or a database application. Teams need a stan-

dardized way to deploy, run, and scale AI models.

At the recent NVIDIA GPU Technology Conference (GTC), several companies were

highlighted to show how they are addressing challenges in inference. For example,

NIO, the electric car maker, is building a scalable inference system to deploy hundreds

of models to process huge amounts of data from autonomous vehicles. Airtel, the sec-

ond-largest wireless provider in India, needs a high throughput inference solution to

process data from hundreds of thousands of customer support calls every day. Com-

panies like GE Healthcare, Wealthsimple, and Yahoo Japan are looking to streamline

and centralize inference deployment across frameworks, computing processors, and

devices. Those organizations that are embracing AI need to master both training and

inference for a sustained competitive advantage.

https://www.nvidia.com/gtc/

vi

AI practitioners, data scientists, ML engineers, IT/DevOps, and others need to look

at both today’s and tomorrow’s requirements for deploying and running models in

production applications. They must account for constantly evolving model frameworks

with different teams using different frameworks. The computing processors, accelera-

tors, and software platforms are also evolving at an unprecedented pace. The number

and type of models are expanding. AI is making its way into many areas of the business.

This is a book from AI practitioners to other practitioners, written with the goal of fill-

ing that need to share that practical and foundational knowledge.

Michael Wharton, Dr. Zhangzhang Si, and Priya Joseph share practical perspectives

obtained from years of experience working at places such as Applied Research Labo-

ratories, Expedia, Amazon Web Services, and more. We also share the feedback that

NVIDIA has received from its customers—all in a single place to learn about the differ-

ent dimensions of AI inference.

This book offers a look at current approaches to current situations, but it also pro-

vides the fundamentals you need to address your own situations. The space of AI is

evolving every day, creating new needs and new solutions. We can’t wait to see what you

come up with as you apply these general principles and explore the inference stage of

AI. Enjoy the book!

—Shankar Chandrasekaran

Senior Product Marketing Manager,

NVIDIA

1

1A brief overview
of AI inference

Imagine you are on a team of engineers that recently expended countless resources

cleaning data, refining pre-processing pipelines, conducting experiments, and

training candidate models for a language translation application. Prior to this work,

market research revealed that a competitor had achieved translation accuracies that

far surpass those of your product’s legacy approach. Since this realization became

clear, the resulting blood, sweat, and tears poured into catching up have finally

paid off. Your team reached the project’s goal metrics by using a transformer-based

model architecture fine-tuned on your company’s proprietary data set. However,

now that you have a proven artificial intelligence (AI) model artifact and a well-es-

tablished preprocessing pipeline, how can you use it to finally regain a competitive

footing for your enterprise?

In order to use your model, it’s imperative to deploy an AI inference system into your

production application. AI inference refers to making queries to an AI model using

novel inputs and returning the resulting predictions. In AI inference systems, pre-

dictive models—often machine learning models—are packaged in such a way that

another service can ask for a prediction given some input data. In chapter 2 we’ll

show you how this works with the hypothetical translation app we just described—by

deconstructing the very real Microsoft Translator.

Let’s say you’ve built a system for an e-commerce site that predicts the time it

takes to ship items to customers. Given an origin location and a destination location,

2 CHAPTER 1 A brief overview of AI inference

context about an item to be shipped (like size and weight), as well as additional meta-

data about the journey (whether it takes place over a holiday, for example) the AI

model provides an estimate of the overall transit time. The model takes all these as

inputs and performs the prediction, also known as inference. The service that performs

these inferences is an AI inference system.

In other words, AI inference allows us to transform machine learning models into

something of value at scale. It allows us to gain insight from these powerful tools that

we’ve spent untold time, energy, and expense creating.

AI models could, of course, be embedded directly into an application, and that is

indeed how it has been done in the past. But given the size and complexity of modern

AI models, as well as their compute demands, they lend themselves well to a microser-

vices approach. A simple linear regression model, for instance, could be hard-coded

directly into an application; but when model parameters number in the millions (as

with AI models), a compartmentalized prediction service is all but inevitable.

Figure 1.1 shows where AI inference implementations fit into a typical development

progression.

Figure 1.1 AI inference systems help simplify the path to production deployment.

Many businesses struggle to cross the bridge between development and production

when using machine learning, and this struggle is often due to the multitude of chal-

lenging barriers that inference deployments present. Artificial intelligence can be used

for a vast array of tasks including autocompletion, forecasting, fraud detection, docu-

ment scanning, search, and many more. Each of these use cases has a particular set of

constraints that bring with them their own unique challenges, though all are readily

achievable given the right tools and insights. One problem common to all products

and services developed with AI models is the deployment phase.

The task of solving this “last-mile problem”—the problem of operationalizing your

prediction artifacts—is the primary focus of this text. We articulate and address many

of these difficulties in the hope of making inference systems more easily adopted. This

 3Key artificial intelligence terminology

report should function as a primer to inform more thoughtful engineering and busi-

ness decisions on the topic. We won’t teach you how to build your own inference sys-

tem, but we will prepare you to build it, or to manage a team that is building it. After

reading this, you should be able to speak intelligently and make sound decisions about

various types of inference, common inference tooling, as well as impacts in a range of

industries.

We start this work with a thorough introduction to AI inference, including key ter-

minology and a look at the historical context that has led to the current approaches. In

chapter 2, we present an array of use-case examples from various industries to give you

an idea of the wide-ranging applications of inference systems. Both the challenges and

the solutions to those challenges are instructive. Then, in chapter 3, we will get into the

engineering details of inference systems and see how they are built. Finally, in chapter

4, we will discuss industry trends and describe some market signals that indicate where

the AI industry may be headed.

Through practical explanations and a series of case studies, we aim to acquaint you

with all the foundational knowledge you’ll need to see how and why an inference sys-

tem may make sense for your projects. We hope that this concise guide becomes a ref-

erence to come back to over time, as you become more familiar with inference systems.

Let’s start with a quick look at the historical context for contemporary approaches to

AI inference.

1.1 Key artificial intelligence terminology

In order to understand practical inference in classical machine learning, developers,

data scientists, and business leaders need to be on the same page about the terminol-

ogy. Though common and familiar, the terms around AI are often conflated or mis-

used. Though somewhat subtle, the distinctions between them help provide language

we can use to discuss all the various applications leveraging such powerful and signifi-

cant technology.

Let’s take a look at the key terms (figure 1.2):

¡	Artificial intelligence: Systems designed to perform tasks otherwise performed by

humans.

¡	Machine learning: The practice of training systems on data (as opposed to pro-

gramming them with rule sets) to make inferences.

¡	Deep learning: A subset of machine learning where the trained systems are

multi-layered (i.e., “deep”), contain progressively more complex learned repre-

sentations of the input at higher depths, and are highly parameterized.

4 CHAPTER 1 A brief overview of AI inference

Figure 1.2 The relationship between artificial intelligence, machine learning, and deep learning.

Given these definitions, it is true to say that deep learning is a subfield of machine

learning, and that machine learning is a form of artificial intelligence. “Classical

machine learning” is often referred to as the subset of machine learning techniques

that preceded deep learning. These techniques are frequently much less complex,

much less parameterized, and therefore require much less computation to make novel

predictions.

1.2 Modern inference microservices: How we got here

AI is becoming such a crucial part of the world we live in that a baseline understand-

ing of AI is a necessary prerequisite for navigating modern business contexts. It has

become a critical component to the banking, retail, real estate, healthcare, manufac-

turing, and advertising industries, among many others. AI algorithms can detect fraud,

predict ad performance, uncover nascent cases of cancer, and discover and suggest

products that you didn’t know you needed. It’s certain that AI is here to stay.

Inference deployment does the work of operationalizing AI models in every one

of these settings, without exception. Without inference, it would be impossible to put

these systems to good use. Furthermore, unless carefully optimized for their unique

prediction tasks, the underlying models often impose a computational burden that’s

cost-prohibitive. Though tricky at times, if the right tools, pipelines, and processes

are made available to all stakeholders involved (that is, customers, development

teams, product owners, and business leaders) inference solutions can provide strong

 5Modern inference microservices: How we got here

competitive business advantages. It is our expectation that this text serves as a reference

to enable just that.

Many historical developments have set the stage for the modern approach to infer-

ence. Advances in hardware and software, as well as norms adopted by the industry, have

shaped the best practices landscape over time. Chief among them are highly scaled

applications, hardware advances, the advent of cloud computing, a focus on container-

ization, advances in deep learning, and ever-evolving use cases. Let’s look into each of

these factors (summarized in figure 1.3) in detail.

Figure 1.3 Some factors that affect the AI inference landscape.

Highly scaled applications: The demand for scale and efficiency has only increased in

recent decades as edge device capabilities, network bandwidth, and global connectiv-

ity have improved in kind. For example, American Express makes around 8 billion

AI-powered decisions annually to mitigate fraud on more than $1 trillion in transac-

tions. The latency, volume, and compute requirements associated with such a scale

necessitates that we rethink traditional infrastructure paradigms.

Hardware advances: Interest in parallel processing has been an ongoing feature of

computing since the 1950s. In the last decade in particular, deep-learning models that

require highly parallelized computation have been widely adopted. This has in effect

acted as a forcing function for advancement. Graphical processing units (GPUs) and

a variety of application-specific integrated circuits (ASICs) have enabled scaled, low-la-

tency model training and prediction. The feedback loop between highly demanding

prediction tasks (like AI inference serving) and the parallel compute they require con-

tinues to this day.

The advent of cloud computing: In the traditional on-premise (“on-prem”) server par-

adigm, compute resources were effectively fixed for the owner’s business use cases. In

many cases, traditional infrastructure design would have required designing to the

6 CHAPTER 1 A brief overview of AI inference

maximum demand a system might encounter, which can be cost-prohibitive. However,

modern cloud computing has enabled not only incredible scale with a relatively low

complexity cost, but also flexibility in resource usage. In the most extreme case, server-

less computing enables dynamic allocation of resources to meet demand “on-the-fly”.

In general, scaled inference has become more cost-effective and accessible to a wider

developer audience, which sets the stage for a thriving industry surrounding AI infer-

ence in the cloud.

A focus on containerization: Containers are portable versions of applications that for

the most part are unconcerned with the environment that they are run on. Developing

them not only enables flexibility in the choice of runtime hardware, but also repro-

ducibility and standardization. Furthermore, it’s much easier to establish standardized

application interfaces, which can in turn make deploying inference a much easier task.

Application containers are in essence a standard layer of abstraction that sit on top

of the environment itself, whereas historically, environment specifications and install

scripting would have been managed by the developer at deployment time. Since con-

tainers have become standard in virtually all enterprise applications, it has laid a foun-

dation for more standardization in the AI/ML world.

Advances in deep learning: Perhaps the most salient point is that deep learning has

demonstrated tremendous business value for a wide variety of use cases in the last

decade. In 2012, a groundbreaking convolutional neural network architecture named

AlexNet drastically improved state-of-the-art performance on the popular ImageNet

image classification benchmark, besting the previous record holder by nearly 11 per-

centage points on top-5 error. (Note: “Top-5 error” refers to how often the correct

image classification is in the model’s top 5 ranked predictions.) Around this same

period, major advances in computer vision became commonplace. Since then, neural

network-based computer vision architectures have proven to be highly important in

many business settings, and similar advances have been achieved in natural language

processing (NLP), reinforcement learning, and other domains. Typical model archi-

tectures require millions of computations to make a single prediction, and in extreme

cases, large language models (“LLMs”) like OpenAI’s GPT-3 require billions. Though

not all production-grade predictive models use deep learning, this context heavily

influenced the modern inference landscape by making high volumes of parallel com-

putation routine.

Ever-evolving use cases: With the popularization of AI and machine learning, statistical

models of all shapes and sizes have shown business viability at scale. Some examples

include:

¡	Spell checking

¡	Search engines

¡	Document translation

¡	Audio transcription

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/pdf/2005.14165.pdf

 7Inference in deep learning

¡	Automated visual inspection

¡	Fraud detection

¡	Text-to-speech with realistic voices

¡	Anomaly detection

¡	Content personalization and recommender systems

¡	Forecasting

¡	Price prediction

¡	And many more ...

In essence, because so many use cases have proven business utility when adapted for

use with artificial intelligence, it’s imperative that business workflows adopt predictive

modeling to remain competitive. A properly configured inference engine lives at the

heart of such a workflow.

1.3 Inference in classical machine learning

Consider an example where a model is required to predict price on real estate list-

ing data. Let’s assume that many categorical features (e.g., square footage, number

of bathrooms, kitchen counter finish types) exist and that the number of encoded

input features is 100. For a simple linear regression model, like those used in classical

machine learning, the number of parameters would be 101. One hundred multiplica-

tions and one sum operation are required to generate a single prediction.

Now consider a more modern multi-layer perceptron (MLP) network (the most

basic type of deep neural network) with three hidden layers of sizes 75, 50, and 25. Such

a model would have over 12 thousand parameters and would therefore require orders of

magnitude more computation to generate a single inference (i.e., to predict price on

a single real estate listing). In many scenarios, it is preferable to pay the cost of the addi-

tional compute in exchange for a model performance boost.

The big takeaway from this simple example is that classical machine-learning algo-

rithms (like k-nearest neighbors, decision trees, and logistic regression models) by and

large can be deployed at scale using generic and standard hardware like CPUs. The

process of scaling infrastructure to meet demand and latency requirements is then a

fairly straightforward exercise. There are certainly cases where classical ML models

benefit from GPU acceleration, but deep-learning models almost always require a more

powerful compute solution. Because of the stark contrast between the computational

demands of classical ML and deep-learning models, the typical software and hardware

requirements for each vary substantially.

1.4 Inference in deep learning

Deep learning architectures span a wide variety of designs, configurations, and data

modalities. However, despite this diversity, nearly all of them benefit from highly paral-

lelized computation in latency-constrained applications. These powerful models have

parameter counts that can range from thousands to hundreds of billions, depending

8 CHAPTER 1 A brief overview of AI inference

on the model architecture. When a use case demands a deep-learning inference (e.g.,

real-time video frame analysis), model optimization and specialized hardware are all

but unavoidable.

Computer vision (CV) and natural language processing (NLP) models, in particular,

are the most “compute-hungry” of all applications. However, because of the incredible

value they provide, we are forced to engineer solutions that allow for widespread utiliza-

tion of these models.

A very common and highly performant NLP model called BERT, for instance,

houses 110 million parameters in the base configuration. A typical computer that pri-

marily leverages CPUs for computation may require more than one minute to generate

a single inference, so one must turn to accelerated computing to improve latency and

make business cases viable. For example, NVIDIA’s graphical processing unit (GPU)

offerings are well-equipped for the task of generating parallel compute-intensive infer-

ences, and solutions like the open-source NVIDIA Triton Inference Server enable scale

across high-demand and dynamic systems. Computer vision (CV) and natural language

processing (NLP) models in particular are very well-suited for use with these high-per-

formance infrastructure components, because they often have the highest per-infer-

ence compute cost. We will go into more detail on related applications in subsequent

chapters.

1.5 Inference patterns

Three different methodologies, or patterns, exist for computing inference in any

appreciable volume: real-time, batch, and streaming. Recognizing each of these sce-

narios and defining appropriate requirements are the first steps to good infrastructure

design.

Real-time inference refers to inference computed as data is ingested. “Real time”

implies that the server must perform at a low latency, and although there is no standard

latency requirement, it is typically assumed to be less than a few seconds. An example

here is a recommender system that produces content recommendations based on user

input along with browsing history. The inferences must be generated during the page

load time and therefore are real-time. Table 1.1 outlines some typical latency require-

ments for real-time performance in various applications.

Table 1.1 Typical latency requirements for real-time inference, by application.

Application
Real-time latency requirement

(ascending)

Fraud detection 1.5 milliseconds

Digital ad bidding 10 milliseconds

Image search 0.15 seconds

Speech recognition 0.3 seconds

Chatbot 2 seconds

https://arxiv.org/pdf/1810.04805.pdf
https://developer.nvidia.com/nvidia-triton-inference-server

 9A modern inference architecture

Batch inference, on the other hand, refers to the case where inferences are made on sam-

ples in groups, or “batches”. The latency requirement in these scenarios is often much

more relaxed, typically on the order of hours or days, and therefore infrastructure with

a lower availability or throughput can be employed. For instance, consider an online

store which produces a weekly personalized newsletter that includes content recom-

mendations. Even though the model used in this scenario could be exactly the same as

the one in the previous example, the need for serving inferences is infrequent. Batch

processing would therefore be a more appropriate pattern.

Streaming inference is used when data must be processed continuously. Such a par-

adigm becomes important in self-driving car applications, for example, where con-

tinuous data from the driving environment informs insight and control. Generating

inference without interruption is paramount to the safety of the vehicle occupants. An

important feature of continuous inference systems is that the rate of inference must

exceed the rate of sample generation, or otherwise make inferences on down-sam-

pled data. Without sufficient compute performance, the inference system can’t pro-

cess the data stream as quickly as the data are generated. If an object tracking model,

for instance, processes video at 20 frames per-second (FPS), yet the camera operates

at 30 FPS, one must either improve prediction latency or predict with a lower overall

throughput.

You may also encounter two additional terms in the inference context: online and

offline. In an online inference setting, throughput within a specified latency budget is

paramount. Conversely, offline predictions are not as latency-constrained and there-

fore afford more flexibility in the deployment infrastructure and configuration. The

online and offline patterns are analogous to the real-time and batch patterns, respec-

tively, so you may see these terms used somewhat interchangeably.

Each pattern brings with it a host of hardware and software implications, where each

design path may differ wildly. It is therefore important to understand all three and

intuit when one may be more relevant than the others. Practical examples for each will

be detailed in subsequent sections.

1.6 A modern inference architecture

Unfortunately, there is no one single system architecture to tackle all possible infer-

ence use cases. Because the pace of iteration is so high when it comes to modern deep

learning, hardware, and tooling solutions, what works especially well today may well

need some revision in the near future. That said, some approaches afford more flexi-

bility and broad applicability than others, in addition to meeting the unique demands

of the task at hand. In this section we present you with one such architecture.

Regardless of the inference pattern applicable to your use case (real-time, batch, or

streaming), the generic architecture depicted in figure 1.4 is a more-or-less universal

solution that should cover most use cases.

10 CHAPTER 1 A brief overview of AI inference

Figure 1.4 A basic system architecture for an inference server.

Let’s walk through this diagram, looking at each component that contributes to the

inference system’s performance and reliability. (Note: The number next to each com-

ponent in this list corresponds to the numbered component in the diagram.)

1.6.1 Application (1)

This is the place where the inferences are ultimately requested and consumed.

Whether making content recommendations, inventory forecasts, or something else

entirely, minimizing the complexity and overhead of the inference system is crucial to

maximizing application development time.

1.6.2 Endpoint (2)

Inference servers generally use either standard HTTP or gRPC protocols. In networked

architectures, the application will make requests to the inference service through some

sort of API, where responses containing prediction payloads follow a contract defined

by the development team. These predictions are then used downstream to inform

decisions and generate further insight.

1.6.3 Prediction queueing service (3)

Queueing enables an inference system to accommodate groups of requests that exceed

the system throughput capacity, among other benefits. If a group of requests all come

in at once, for instance, inferences can be made as the compute hardware allows, while

staging incomplete requests until resources become available. Whether ephemeral or

persistent, model availability at prediction time may not always be sufficient to meet

bursts of demand. The queueing service makes continued system reliability possible.

 11A modern inference architecture

1.6.4 Batching service (4)

Though ultimately optional, having a service within the inference system that performs

batching is critical for optimal compute utilization and latency. Performing effective

batching is made complicated by the constraints of the compute hardware, but solu-

tions like NVIDIA’s Triton Inference Server can operate effectively in the background

without much configuration. Having some flavor of a batching service can mean the

difference between meeting requirements and not meeting them. In a hypothetical

case where an e-commerce website makes product recommendations for thousands of

customers each second, a batching service is crucial to meet demand. This approach

also allows for more efficient utilization of accelerated compute hardware.

1.6.5 Model (5)

After a batch of requests has been created, the inference itself must be generated.

Whether the “model” in this case is a machine-learning model, a logistic-regression

model, or even a simple set of heuristics is unimportant. The only requirement of this

“model” is that input data are transformed into predictions. Note that pre-processing

(e.g., image normalizing) and post-processing (e.g., converting class numbers to text

labels) pipelines are often present as well, but in this diagram, they are assumed to be

part of the model itself. Said succinctly, the model is the core piece of intellectual prop-

erty that drives the inference server.

1.6.6 Model framework (6)

The model framework does the work of translating parameterized model definitions

into instructions on your hardware of choice. TensorRT, PyTorch, and TensorFlow

are all commonly used frameworks that fit within virtually any inference server con-

text and are often chosen based on developer familiarity. It’s important to note that

some frameworks are used for development, deployment, or some combination of the

two. PyTorch, for instance, is commonly used to both train models and deploy them,

whereas a format like TensorRT is primarily intended for deploying already-trained

models for inference.

Performance benchmarking is crucial for critical applications, as the relative per-

formance may vary substantially between frameworks and architectures. The backend

choice plays a key role in the success of any system, especially since multiple models may

be relevant to a given application.

1.6.7 Compute hardware (7)

The compute hardware does the raw computation to generate inferences. As dis-

cussed previously, many different options exist for this component, but the majority of

deployments use some combination of CPUs and GPUs. All common backend frame-

works (e.g., TensorRT, ONNX, PyTorch, or TensorFlow) support flexible computa-

tion on either. If you’re using NVIDIA’s Triton Inference Server for your inference

deployment, the Triton Model Analyzer enables you to test your models on a variety of

https://developer.nvidia.com/tensorrt
https://pytorch.org/
https://www.tensorflow.org/
https://onnx.ai/
https://developer.nvidia.com/nvidia-triton-inference-server

12 CHAPTER 1 A brief overview of AI inference

compute solutions in order to optimize performance and cost when making this key

decision.

1.6.8 Metrics server (8)

Last, deploying a metrics server is crucial for server health management and perfor-

mance administration. Common metrics may include statistics on inference latency,

hardware utilization, request volume, prediction accuracy (when calculable), and

many others.

Though other components may exist (e.g., a load balancer), the previously discussed

core pieces are germane to the success of any production inference server. It’s also

worth noting that additional tooling and harnessing around the inference workflow

lives outside the serving context, especially in relation to the model training pipeline

(e.g., a model registry). Thus, the aforementioned architecture, though general and

performant, should be considered a bare minimum for the successful development,

deployment, and management of statistical prediction pipelines.

1.7 Challenges and best practices for inference systems

The complexities and design levers for inference infrastructure are nearly as diverse as

the use cases they enable. Many common themes emerge, however, and in this section,

we’ll look at some of the top challenges and approaches to addressing them. Under-

standing this list of considerations (by no means exhaustive) is crucial to making sound

design decisions for inference applications.

The best practices presented here are meant to serve as a concise checklist of the

major guidelines, rather than all the details one might need to implement each of

them. Inference and MLOps tooling is typically well-documented, so there should be a

multitude of resources covering the tool stack you select. The concepts described here

should be general enough, however, that a valid solution will exist in each case.

1.7.1 Model management and orchestration

Model management and orchestration refers to the processes and tools utilized to

manage predictive model artifacts. There are many tools on the market that exist to

meet this need (MLFlow, Weights & Biases, and Neptune.ai, to name a few), but all

serve a similar purpose at their core. Models are core assets in machine learning appli-

cations, and like software development, model development is a highly iterative pro-

cess that requires some level of governance to ease the transition to deployment as well

as enable reproducible results.

Some best practices include:

¡	Version your models and associate unique version numbers with your

deployments.

¡	Store in a format that is compatible with your deployment infrastructure.

– Examples: TensorFlow, TFLite, PyTorch, ONNX, TensorRT

 13Challenges and best practices for inference systems

¡	Package ancillary artifacts with each model to make the model generation pro-

cess reproducible.

¡	Ensure your model orchestration platform is highly available to your deployment

environment and team.

1.7.2 Model optimization

Many techniques exist for optimizing model performance in production. As a general

rule, higher compute, memory, and cost efficiencies come at the expense of model

performance metrics (e.g., accuracy, F1 score, RMSE). This may not always be true,

but it should be a reliable heuristic in the vast majority of cases. Techniques such as

network pruning, quantization, and mixed precision inference exist to help minimize

unnecessary computation, but there is always a balance to strike when using these tech-

niques. Optimization is a very active research topic, especially as it relates to the model

training process, and many advances on this front should be expected in the coming

years. Though it’s possible to skip the model optimization step altogether, the resulting

inefficiencies may impact latency, user experience, and recurring costs of the eventual

production system.

Some best practices include:

¡	Identify and exceed a realistic target for your model performance metric. Any

margin above this metric leaves room for optimization.

¡	Consider both memory and latency requirements when choosing an optimiza-

tion strategy.

¡	Evaluate optimized models in the same way the parent models are evaluated for

performance.

¡	If necessary, explore multiple model formats, as compute efficiency may differ

from framework to framework.

1.7.3 Model framework selection

Each model framework has its own advantages and disadvantages. Some are optimized

for particular hardware, while others are adapted for a more intuitive experimentation

interface. It is frequently the case that the skillsets of the development team and pre-ex-

isting codebases make the primary framework choice a foregone conclusion, but it’s

important to note that the development and deployment frameworks are not necessar-

ily required to be the same.

TensorRT, Tensorflow, PyTorch, Keras, and Scikit-Learn are all commonly used on

modern deployments. When choosing a framework, here are some best practices to

keep in mind:

¡	Consider your development and deployment frameworks independently

(though they may be the same).

¡	Ensure each model framework is compatible with all aspects of your develop-

ment and deployment environments, respectively.

14 CHAPTER 1 A brief overview of AI inference

¡	Consider the skillsets of the teams that build and deploy your models, because

this will impact engineering velocity.

1.7.4 Compute hardware selection

Compute hardware selection can be intimidating, because the risk of suboptimal

choices can result in underutilized resources and/or increased cost. In some cases

(e.g., edge deployments), the hardware may already have been selected before the

deployment, but in most cases, a wide variety of solutions may exist. Though serverless

solutions can help abstract away the hardware selection piece, the hardware is most

often a critical consideration. Here are some best practices to consider:

¡	Clearly define all requirements (latency, memory, throughput, I/O, and others)

prior to making a critical selection for production.

¡	If using deep learning in a latency-constrained application, you almost cer-

tainly will need a GPU or other non-CPU ASIC designed for highly parallelized

computation.

¡	Perform empirical tests on a multitude of hardware stacks to validate your utiliza-

tion hypotheses (e.g., with NVIDIA’s Triton Model Analyzer).

¡	Frequently monitor your inference system to detect changes that require hard-

ware reconfiguration, as could be the case with a drop in hourly request volume.

¡	Consider scale. In the most dynamic and scaled applications, a serverless con-

tainer orchestration solution (like Kubernetes) may be important to consider.

1.7.5 Model evaluation

Like writing unit tests to validate software, developing an evaluation pipeline is crucial

to ensure adequate model performance prior to deployment. Common components

include a “hold-out” set of test data (i.e., data not used to train a model), performance

metrics, and subscale testing strategies like canary deployments. Some best practices

include:

¡	Never use evaluation data to train models (this can result in an artificially inflated

performance score that fails in production, otherwise known as “overfitting”).

¡	Consider all means possible to validate model performance and mitigate deploy-

ment risk, up to and including human review.

¡	Minimize requests to use your evaluation pipeline, as repeated use may result in

reduced reliability due to a problem called “information leakage”.

¡	Ensure evaluation hardware is the same (or nearly the same) as your deployment

hardware, as performance differences could add risk to meeting production

requirements.

Careful consideration of these recommendations can help ensure a more stable deploy-

ment, which reduces the risk of problems encountered in production. If these points

are not considered prior to deployment, issues may arise during production opera-

tions that could cause otherwise avoidable system downtime or poor user experience.

15

In this section you will find a library of brief case studies that demonstrate what

a successful inference deployment could look like across a variety of industry ver-

ticals: natural language processing (NLP), speech AI, computer vision (CV), rec-

ommender systems, and fraud detection. Though the business uses of machine

learning algorithms vary substantially, the applications we describe here are some of

the most well-established in production scenarios. There are certainly active areas of

machine-learning research that have not yet made the jump to “production-ready.”

However, the case studies outlined here have shown demonstrable business value

and deployability. Many as-yet-unseen use cases will likely become commonplace in

the near future, but currently the case study selections outlined in this chapter dom-

inate the field.

These examples highlight a range of industries as well as a variety of machine-learn-

ing algorithms in order to show just how pervasive AI inference applications have

become. Though not exhaustive, this section illustrates a host of possibilities in prac-

tical artificial intelligence, and by practical we mean artificial intelligence with both

technical feasibility and business viability. Though brief, these stories include links

to further reading that will provide additional detail for the curious reader. We hope

these stories will inspire and educate, in addition to helping you avoid some com-

mon missteps and hurdles you may encounter as you design, build, and/or manage

your own inference systems.

Prior to detailing these case studies, however, it’s worth highlighting a couple of

key technologies that underpin many of them. These tools, TensorRT and the Triton

Inference Server, both developed by NVIDIA, will get practical walkthroughs and

2AI inference case studies

16 CHAPTER 2 AI inference case studies

more detail in chapter 3. But understanding them at a high level will help you get the

most out of these case studies.

2.1 Optimizing and scaling solutions with NVIDIA TensorRT
and Triton

Setting up inference systems for deep learning that scale well is both easier and faster

now that we have repeatable tools that are very reliable. Two relatively recent develop-

ments have become especially important: SDKs to streamline the process of optimiz-

ing models and serving frameworks that streamline deployment. Options among SDKs

include Tensor RT, Deep Speed, and the TensorFlow Model Optimization toolkit. And

serving frameworks include Triton, Seldon Core, TorchServe, Bento ML, TensorFlow

Serving, and KServe. We won’t go into the differences between all these options here;

instead, we will focus on the two tools that our case studies rely on: Tensor RT and the

Triton serving framework.

TensorRT is an SDK for high-performance deep learning that includes an infer-

ence optimizer and runtime that delivers low latency and high throughput. Triton,

meanwhile, is an open-source inference serving framework that standardizes model

deployment and execution and delivers fast and scalable AI in production. When used

together, TensorRT and Triton allow for the optimization and scaled deployment of

development models in production contexts. Let’s get a quick idea of how each works.

TensorRT uses a host of tactics to optimize models prior to the deployment step. Fig-

ure 2.1 highlights some of these methods.

Figure 2.1 TensorRT model optimization strategies. Source.

https://aws.amazon.com/blogs/machine-learning/how-amazon-search-achieves-low-latency-high-throughput-t5-inference-with-nvidia-triton-on-aws/

 17Optimizing and scaling solutions with NVIDIA TensorRT and Triton

Each numbered balloon in the figure represents a crucial piece of the model optimi-

zation strategy. Let’s look at those pieces in a bit more detail, listed here with the cor-

responding number from the figure. You will find much more detail about TensorRT

and each of these features at NVIDIA TensorRT.

1 Weight and Activation Precision Calibration: In order to maximize throughput while

maintaining accuracy, TensorRT quantizes the parameters of the development

model to FP16 or INT8 (lower precision number formats for faster computation)

with calibration data in the loop. While quantizing, the optimization algorithm

can thus maintain, or nearly maintain, baseline performance.

2 Layer and Tensor Fusion: When a single operation can provide approximately the

same behavior as multiple operations, TensorRT combines them. For example, if

sequential shuffle operations randomize the order of values, a single shuffle can

achieve the same goal. Using this logic, the optimizer can reduce computation of

a variety of layer combinations.

3 Kernel Auto-Tuning: By selecting the best possible CUDA kernels (i.e., functions

executed on a GPU) for operations internal to the model, the model optimizer

can further improve computational performance. This ensures that predictors

follow more optimal computational pathways on GPU hardware.

4 Dynamic Tensor Memory: Tensors allocated during intermediate computation for

inferences can occupy a nontrivial amount of memory. By deallocating tensors

after they are no longer necessary, one can minimize the model’s memory foot-

print. Minimizes memory footprint and reuses memory for tensors efficiently.

5 Multi-Stream Execution: By executing computational sequences in parallel, overall

throughput is maximized along with device utilization. Scalable design allows the

system to process multiple input streams in parallel.

6 Time Fusion: Recurrent neural networks use the same model parameters to iter-

atively process a sequence of inputs. The model uses intermediate outputs from

prior time steps along with intermediate inputs from the sequence until a final

output is produced. By using dynamically generated kernels, the optimizer can

streamline computation over sequential time steps. Optimizes recurrent neural

networks over time steps with dynamically generated kernels.

Though not comprehensive, these approaches allow TensorRT to take base models

from a variety of source frameworks (e.g., PyTorch) and optimize runtime execution.

Once optimized, the model can be used in conjunction with the Triton framework for

deployment.

The Triton Inference Server is an open-source framework that creates a standard

interface for high performance model serving. Regardless of the development frame-

work, Triton supports a host of model backends while still enabling a multitude of run-

time features that could be expected of a modern, capable inference service. Figure 2.2

shows an overview of the Triton server framework, components, and workflow.

https://developer.nvidia.com/tensorrt

18 CHAPTER 2 AI inference case studies

Figure 2.2 NVIDIA Triton Inference Server overview. Source.

Many of the Triton components in figure 2.2 (such as the application and batching ser-

vice) you should recognize from the generic configuration we showed you in chapter 1

(figure 1.4). Some additional features in the Triton system are worth pointing out. For

instance, the flexible model loading from a connected model repository allows for eas-

ier model management and deployment, especially as new artifacts are generated over

time. In order to minimize time to develop iteratively, Triton also includes bundled

tools like the Model Analyzer, which allows the developer to profile a deployed model

and further optimize the final configuration.

When used with a TensorRT-optimized model, the Triton server affords the devel-

oper a tool to deploy reliable infrastructure that is robust against demanding produc-

tion workloads. We’ll look at Triton’s features in action as we go through the real-life

case studies in this chapter.

2.2 Inference in natural language processing (NLP)

Natural language processing (NLP) refers to a class of algorithms that derive insight

from human language (including speech or text). Tasks such as sentiment analysis,

machine translation, text generation, and text search have already become an import-

ant part of living in the world of today. When translating a phrase from a foreign lan-

guage, searching for an article, or checking your written grammar in a word processor,

https://developer.nvidia.com/blog/simplifying-ai-inference-in-production-with-triton/

 19Inference in natural language processing (NLP)

NLP drives the backend that allows so much power at your fingertips. Let’s look at

some examples in practice. (At the end of each example, we provide references and

resources for further reading.)

2.2.1 Amazon product search

CHALLENGE

Amazon aims to provide an effortless user experience with their product search. In

practice, the platform places a heavy emphasis on highly accurate spelling correction,

because spelling errors can put a barrier between users and the content they are tar-

geting. Though deep learning has provided measurable improvements over previous

classical methods, the increased accuracy incurs a steep computational cost. While run-

ning experiments, Amazon discovered that the Text-to-Text Transfer Transformer (T5)

was highly performant and worth replacing the previous backend predictor. However,

deployment of the T5 model at any appreciable scale proves to be difficult due to its

sheer size and computational demand. The key challenges the system developers had

to address were latency, throughput, and cost efficiency. To meet production demand,

Amazon needed to achieve a sub-50-millisecond P99 latency (i.e., a sub-50-millisecond

latency in at least 99% of cases).

SOLUTION

In the production solution, Amazon employed the TensorRT framework to optimize

model inference and Triton to do the work of deployment. When leveraged in tandem,

TensorRT’s model optimization tactics, along with the options offered by the Triton

Inference Server (batching, queueing, model profiling with the Model Analyzer, etc.),

allowed Amazon to reach their production requirements and avoid incurring unnec-

essary compute costs. The combination of features that both tools provided enabled

widespread deployment of the T5 product search model, despite its computational

complexity.

OUTCOME

When tested on both NVIDIA T4 and A10G GPUs, speedups ranging from 400% to

760% were seen consistently across various model configurations and precisions. In

the most extreme case, the t5-base model latency was improved from 60.0 to just 8.5

milliseconds on the A10G GPUs (using a g5.xlarge instance on AWS). In effect, lever-

aging the TensorRT optimization framework enabled Amazon to make a prototype

model production-ready.

Similarly, the Triton inference server enabled dynamic batching on the server side

that effectively optimized GPU utilization in addition to maintaining a synchronous

near-real-time experience on the client side. Overall, these techniques constituted a

powerful deployment strategy that not only performed optimally but allowed for a

much more seamless user experience due to tolerance for misspelled or otherwise mis-

leading queries.

https://arxiv.org/abs/1910.10683

20 CHAPTER 2 AI inference case studies

FURTHER READING

¡	“How Amazon Search achieves low-latency, high-throughput T5 inference with

NVIDIA Triton on AWS”

¡	“Optimizing T5 and GPT-2 for Real-Time Inference with NVIDIA TensorRT”:

Interactive model optimization walkthrough

2.2.2 Microsoft Translator

CHALLENGE

Translator is a part of Microsoft Azure Cognitive Service that helps people commu-

nicate with one another. More specifically, it is a powerful API that allows developers

and users to perform language translation. “Our vision is to eliminate barriers in all

languages and modalities with this same API that’s already being used by thousands

of developers,” the development manager for Translator has said. With some 7,000

languages spoken worldwide, it’s an ambitious goal. However, production-quality lan-

guage models are generally very compute-heavy, which makes the transition to deploy-

ment a challenging process. To make matters worse, the team eventually selected a

transformer-based mixture of experts (MoE) model to perform the translation. The

final architecture has more than 5 billion parameters and is 80x larger than the second

largest NLP model under Microsoft’s purview. Nevertheless, the team targeted sub-two-

second latency per translated document.

SOLUTION

In order to frame the problem in a way that’s easily parallelizable, Translator breaks a

given document translation request into a batch with roughly hundreds of sentences

per sample. In practice, this provides the local context needed to make a translation

possible, while removing the need to process a large document with a single forward

pass of a model. However, the work of optimizing the translation latency of a single

sample prediction still remains.

The team turned to NVIDIA’s Triton inference server on Microsoft Azure cloud infra-

structure to handle the prediction optimization. In particular, features such as dynamic

batching and model optimization specific to transformer architectures allowed for

maximizing compute utilization and therefore minimizing overhead cost of inference.

OUTCOME

As expected, the team was able to improve prediction latency over non-optimized GPU

runtime predictions. In fact, during preliminary prototyping, they were able to speed

up prediction by a factor of 27x. This work is expected to extend directly to produc-

tion; however, the rollout process is ongoing. The team plans to release the new Trans-

lator architecture for a few key languages, and then progressively add support for all

known languages. Though ambitious, the team has taken major strides toward achiev-

ing this goal. Optimized deployment technologies allowed Microsoft to deploy a very

complex and compute-heavy model in order to keep translation quality high, thereby

improving user experience as well as the overall utility of the system.

https://aws.amazon.com/blogs/machine-learning/how-amazon-search-achieves-low-latency-high-throughput-t5-inference-with-nvidia-triton-on-aws/
https://aws.amazon.com/blogs/machine-learning/how-amazon-search-achieves-low-latency-high-throughput-t5-inference-with-nvidia-triton-on-aws/
https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-inference-with-tensorrt/

 21Inference in computer vision

FURTHER READING

¡	“Getting People Talking: Microsoft Improves AI Quality and Efficiency of Trans-

lator Using NVIDIA Triton”

¡	“Scalable and Efficient MoE Training for Multitask Multilingual Models”

2.3 Inference in computer vision

Computer vision (CV) refers to a host of algorithms that process vision data. Whether

digital photos, video, or some other visual data source, the algorithms often operate

on raster-based input formats (single- or multi-channel pixel grids) to generate infer-

ences. Many modern model architectures draw inspiration from the human visual cor-

tex, leading to a host of creative and computationally intensive solutions. Let’s look at

how this plays out in industrial applications.

2.3.1 Siemens Energy autonomous plant inspections

CHALLENGE

Siemens Energy is a leading supplier of power plant equipment and technologies and

has a massive portfolio of machines and sites to service. Siemens Energy is responsible

for tens of thousands of gas turbines, steam turbines, generators, and gas and diesel

engines. In addition, market pressures from the renewable energy industry have cre-

ated more scrutiny on the efficiency of traditional power generation. Because of this,

Siemens Energy has embarked on an automation journey that will help reduce the

overhead costs of keeping their existing infrastructure online.

Inspections, in particular, place a lot of sometimes unpredictable demand on the

power generation workforce, which is both aging and declining in Europe. In addition,

hundreds of inspection types are currently performed via human walk-throughs and

are required to detect and address issues that, left unchecked, could create damage

costing millions of dollars. These issues amount to oil leaks, undesired steam, spills,

and other issues. Siemens Energy needed a solution to deploy a multitude of computer

vision models trained to address these issues in a scalable manner. In particular, they

wanted to avoid changing their hosting solutions because they hosted models for differ-

ent kinds of analytics. Additional key requirements included a need for occasional edge

deployment, as well as pre-processing capabilities, as tasks like person anonymization

were required prior to making inferences.

SOLUTION

Siemens Energy ultimately decided to leverage Triton Inference Server to tackle their

inference needs. The multi-model, preprocessing, and edge support capabilities are

key features that enable production-quality outcomes. In addition, AWS was leveraged

to host the backend infrastructure, which enables scale across the geographic areas

serviced by Siemens Energy.

https://blogs.nvidia.com/blog/2022/03/22/microsoft-translator-triton-inference/
https://blogs.nvidia.com/blog/2022/03/22/microsoft-translator-triton-inference/
https://arxiv.org/abs/2109.10465

22 CHAPTER 2 AI inference case studies

OUTCOME

Siemens Energy now conducts visual inspections using computer vision models as part

of routine operations. The product management team points, in particular, to the

flexibility of the Triton solution, which enables autonomous monitoring of complex

power plants whose sensors and cameras may use legacy software. Though the cur-

rent solution has the capacity to run inference in edge scenarios where data export

is prohibited, the enterprise plans to progressively integrate these edge devices into

their production infrastructure. By adopting automated visual inspection technology,

Siemens Energy could address labor market gaps, increase inspection efficiency, and

minimize risk of costly downtime.

FURTHER READING

¡	“Electrifying AI: Siemens Energy Taps NVIDIA Triton Inference Server for Power

Plant Inspections, Autonomy”

2.4 Inference in recommender systems

Recommender systems do exactly what their namesake implies: recommend things.

Frequently these algorithms provide suggestions for users based on browsing history,

the behavior of users similar to the target user, as well as additional sources that ulti-

mately increase the likelihood of further engagement. However, a host of ranking

algorithms and statistical techniques underpin these architectures so that the “best”

(however the business defines this word) content is made available to the user, client,

or customer. Here we will outline how this can be achieved in practice.

2.4.1 Snap recommendations

CHALLENGE

Every year, eCommerce is responsible for trillions of dollars in sales worldwide and

serves billions of consumers. Recommender systems live at the heart of these plat-

forms. Utilizing these powerful systems results in a more engaging experience for the

user as well as an increased revenue for the digital retailer.

However, to provide better recommendations, there exists incredible motivation to

make predictive models bigger, better, and faster. The computational demand associ-

ated with these changes demands an optimized and scalable solution.

Snap, the parent company to social media app Snapchat, services more than 300 mil-

lion daily active users. Ads served on their platform provide a primary revenue stream;

therefore, it is paramount that Snap prioritizes content ranking (and therefore recom-

mendation) performance that maximizes ad engagement. Though Snap has been able

to produce models that produce high quality ad ranking, the computational load of the

baseline is prohibitive to deploy on the production infrastructure.

SOLUTION

Snap used NVIDIA GPUs and Merlin to boost its content-ranking capabilities. Snap

leveraged Merlin for trained model optimization in preparation for inference. By

https://blogs.nvidia.com/blog/2021/11/09/siemens-energy-taps-nvidia-triton-inference-server-for-power-plant-inspections-autonomy/
https://blogs.nvidia.com/blog/2021/11/09/siemens-energy-taps-nvidia-triton-inference-server-for-power-plant-inspections-autonomy/

 23Inference in fraud detection

leveraging this framework, Snap enabled the creation of highly performant models

that are optimized for inference on NVIDIA GPU hardware.

OUTCOME

Snap was ultimately able to build and deploy models trained within the Merlin frame-

work, and because of the inherent focus on optimized inference, was able to reach

target cost and performance goals simultaneously, including a 50% increase in cost

efficiency for the inference procedure and a two-fold decrease in latency. That reduced

latency, in turn, freed up compute power to improve the accuracy of their models to

better serve their advertising partners. It’s clear that in practice, model performance

achieved in a development environment can be transferred to the production setting

when appropriate care and design forethought are employed. Furthermore, by avoid-

ing a sacrifice in accuracy in the deployed context, Snap was able to maintain a high

click-through rate (CTR) and thus drive more ad revenue relative to a model with

lesser performance.

FURTHER READING

¡	“Billions Served: NVIDIA Merlin Helps Fuel Clicks for Online Giants”

¡	“NVIDIA Merlin HugeCTR”

2.5 Inference in fraud detection

By abusing certain systems and institutions, attackers sometimes use manipulative tac-

tics to seek illegitimate personal gain. This fraudulent activity results in losses and inef-

ficiencies that incur costs to mitigate, in addition to the baseline cost of the fraud.

When deploying fraud detection algorithms, institutions can fight back and limit dam-

ages, thereby protecting legitimate business operations. When you lose a credit card

and your bank calls you before you’ve even realized you lost it, it is certain that fraud

detection tools detected an attempt at misuse. Here we will see how this technology

can be scaled to protect financial customers.

2.5.1 American Express (AMEX) fraud detection system

CHALLENGE

Cybercrime costs the global economy $600B annually, or nearly 1% of worldwide

GDP, according to an estimate in 2018 from McAfee. AMEX alone is responsible for

more than 8 billion transactions per year. With more than 115 million active credit

cards, AMEX has maintained the lowest fraud rate in the industry for 13 years in a row,

according to to the Nilson Report (see also BusinessWire). However, because of the

inherent adversarial dynamic between fraudsters and financial institutions, the insti-

tutions must continually adapt to combat novel fraud strategies. In addition, online

transactions are on the rise, which puts pressure on the financial industry to serve real-

time models at a global scale.

https://blogs.nvidia.com/blog/2022/01/18/nvidia-merlin-helps-fuel-clicks-for-online-giants/
https://developer.nvidia.com/nvidia-merlin/hugectr
https://www.mcafee.com/enterprise/en-us/assets/executive-summaries/es-economic-impact-cybercrime.pdf
https://nilsonreport.com/publication_newsletter_archive_issue.php?issue=1191
https://www.businesswire.com/news/home/20210928005359/en/American-Express-Releases-2020-2021-Environmental-Social-and-Governance-Report-with-New-Long-Term-Goals#:~:text=In%202021%2C%20American%20Express%20released%20MyCredit%20Guide%20and%20Score%20Goals%20on%20its%20mobile%20app%20in%20the%20U.S.%2C%20tools%20to%20help%20consumers%20improve%20their%20credit%20score%2C%20and%20it%20maintained%20the%20lowest%20fraud%20rate%20among%20the%20major%20credit%20card%20networks%20for%2014%20consecutive%20years%20according%20to%20the%20February%202021%20Nilson%20Report

24 CHAPTER 2 AI inference case studies

SOLUTION

Because transaction history is such a crucial part of making fraud determinations,

AMEX selected a model architecture capable of consuming sequences as inputs. After

some experimentation, the AMEX team selected the long short-term memory (LSTM)

deep neural network architecture to do the work of transaction classification. Though

highly performant, as in many other cases within this text, the model incurred a large

computational cost. The team was able to leverage NVIDIA DGX systems (multi-GPU

on-prem compute servers) to perform the model training. Once created, the model

artifacts were optimized using the TensorRT framework and deployed using a Triton

Inference Server with NVIDIA T4 GPUs.

OUTCOME

When combined with the company’s long-standing gradient boosting machine (GBM)

model, the LSTM model can improve fraud detection accuracy by up to 6% in specific

segments. As deployed, the architecture can generate inferences with a sub-2 milli-

second latency, which is a generally unattainable target metric. Clearly, if intentional

design decisions are made, extremely low-latency deep neural network models can be

deployed at a global scale. The Machine Learning and Data Science Research team at

AMEX feels they have created “best-in-class fraud protection and servicing.” The use of

low-latency fraud detection algorithms at scale enables AMEX to both deliver optimal

customer experience as well as mitigate lost revenue due to fraud mitigation.

FURTHER READING

¡	“American Express Adopts NVIDIA AI to Help Prevent Fraud and Foil Cybercrime”

https://blogs.nvidia.com/blog/2020/10/05/american-express-nvidia-ai/

25

Now that you understand the concepts behind inference deployment and have seen

real-world case studies showing the numerous ways that it is used in practice, let’s

look at the process of actually implementing it. In this chapter, we will cover chal-

lenges, tools, and processes to deploy inference in practice. At the end of the chap-

ter, we present a code lab for you to apply the processes you learn here. In this lab,

you will build a reverse image search model server which will give you hands-on

experience with end-to-end model training and deployment.

3.1 Challenges of inference deployment

The seminal paper “Hidden Technical Debt in Machine Learning Systems” states

“only a small fraction of real-world ML systems are composed of the ML code.” As

the paper points out, “the required surrounding infrastructure is vast and complex”

compared with the machine-learning algorithms at the center of it all. A visual, fig-

ure 3.1, will drive this point home. Look at the tiny box in the center marked Core

ML Code and you will get an idea of its size relative to the infrastructure. As you can

see, to make machine learning operational in production, a number of other mod-

ules—including data transform, AI governance, process management, and infra-

structure—all need to work coherently.

3AI inference in practice

https://papers.nips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html

26 CHAPTER 3 AI inference in practice

Figure 3.1 Machine learning code, represented by the small box in the middle, is only a small piece of the complex

infrastructure in machine-learning systems. This figure is inspired by a similar figure from the paper “Hidden

Technical Debt in Machine Learning Systems,” but updated with more recent tools and modules for contemporary

machine learning in production.

So, the overarching challenge of inference deployment is getting it to work well

with all the other components in the system. Here we briefly walk through this and

other common challenges based on our first-hand experience deploying inference in

production.

3.1.1 Latency and throughput

Real-world applications often require the inference to have low latency and high

throughput. For example, safety-critical applications, such as autonomous driving,

place strict requirements on throughput and latency expected from deep learning

models. The same holds true for most consumer applications, including recommen-

dation systems. In real-time ad bidding systems, the inference is expected to be done

within several milliseconds.

3.1.2 Integration with production data

It is not uncommon to have pre-processing and post-processing steps in the inference

process. For example, the pre-processing step can be used to normalize the data, and

the post-processing step can be used to convert the output to a desired format.

A common pitfall is to use different feature transformations in model training than

the feature transformations in the live inference. The feature transformations are

closely coupled with the model. They work hand in hand. Besides manually defined fea-

ture-extraction logic, vocabularies, lookup tables, normalization and scaling parameters

are generated during the training process. These parameters control how feature trans-

formations are done. As data scientists evolve the training recipes, the feature transfor-

mation logic and parameters can change from one version of a model to the next. If a

new model is deployed without updating the version of its feature transformations, the

 27Challenges of inference deployment

inference may deliver underwhelming accuracy in production. For example, consider

a model using the product’s height in inches as a feature. An update is made so that

the height is now measured in centimeters. If the production feature pipeline is not

updated to reflect this change, the inference can behave poorly.

3.1.3 Handling different deployment platforms

Cloud (AWS, GCP, Azure), on-premise servers, mobile devices, and IoT devices are

all possible locations to deploy inference. With so many choices of platforms, each

with different toolchains or SaaS products, it can be overwhelming to make the right

choice.

3.1.4 Handling different types of models, model architectures, and ML

frameworks

Linear models, tree-based ensemble models, convolutional nets, recursive neural net-

works, transformers, and many other types of models are used to solve different prob-

lems. A wide variety of ML frameworks are used to train models: TensorFlow, PyTorch,

JAX, MXNet, Scikit-learn, XGBoost, etc. As the model and framework differ, the best

practices for deploying and integrating also differ. Navigating the complex landscape

is a challenge for data science and engineering teams.

3.1.5 Scaling to multiple models and complex prediction flows

Multiple models can be involved in the inference. For example, a model can be used

to detect non-trivial movement in a camera stream and trigger the follow-up analysis,

and a second model can be used to detect persons, packages, and other fine-grained

information.

3.1.6 Minimizing downtime for rollout

The ability to deploy new inference with minimal downtime can be critical to many

consumer-facing applications. Server interruption may mean lost revenue, poor user

experience, and added operational burden. Tools that support smooth deployment

and rollout, as well as warm start, can be very helpful.

3.1.7 Resource optimization

As deep-learning models become more and more accurate, their size also increases.

The amount of compute, memory, and storage required to run a deep-learning model

can be very large. Thus, it is important to have the ability to profile a model for its

resource consumption and to optimize the model to reduce its resource requirement.

3.1.8 Monitoring

As inference servers scale to many models serving millions of requests, it is important to

have visibility of the health of the service. Is the server overloaded? What are the actual

latency and throughput? How much is resource consumption? Is there a memory leak?

28 CHAPTER 3 AI inference in practice

Are there anomalies in the inference server? Reliable tools are needed to answer these

questions so that Dev-Ops and ML-Ops teams can make informed decisions.

This list of challenges we’ve just covered is in no way exhaustive, but it is a good start-

ing point to help you understand the need for selecting the right tools and processes

for each project.

Next, we look into two tools, TensorRT and Triton Inference Server, that alleviate

many of the pain points we’ve just described. You’ve already been introduced to these

tools; here we will look at how to work with them.

3.2 Optimize models with TensorRT

TensorRT is an SDK to optimize a trained machine learning model to have low latency

and high throughput on a specific GPU.

Figure 3.2 shows a typical development workflow for using TensorRT.

Figure 3.2 A typical development workflow for using Tensor RT.

As you can see, after data scientists and machine learning engineers train models using

a framework of their choice, they need to optimize the model file. TensorRT can be

used for this post-training optimization, producing an optimized model file for a target

GPU device. The optimized model is then deployed to serve production traffic.

3.2.1 Precision and speed

TensorRT supports computations using data types of different precisions including

FP32, FP16, INT8, Bool, and INT32.

Therefore, you can easily instruct TensorRT to use FP16 calculations for your entire

model. For regularized models whose input dynamic range is approximately one, this

typically produces significant speedups with negligible change in accuracy.

https://docs.nvidia.com/deeplearning/tensorrt

 29When to use TensorRT

3.2.2 Quantization

TensorRT supports quantized floating point, where floating-point values are linearly

compressed and rounded to 8-bit integers. This significantly increases arithmetic

throughput while reducing storage requirements and memory bandwidth. When

quantizing a floating-point tensor, TensorRT must know its dynamic range—that is,

what range of values is important to represent—values outside this range are clamped

when quantizing.

3.2.3 API languages

TensorRT’s API has language bindings for both C++ and Python, with nearly identi-

cal capabilities. The Python API facilitates interoperability with Python data process-

ing toolkits and libraries like NumPy and SciPy. The C++ API can be more efficient,

and may better meet some compliance requirements, for example, in automotive

applications.

3.3 When to use TensorRT

First, TensorRT, like similar SDKs, is used after you have trained a model with a

deep-learning framework. It is not intended to train or fine tune a model.

Second, TensorRT is used to optimize a model for a specific GPU. If you plan to

deploy inference on GPU devices in the cloud (such as V100) or the edge (such as

Jeston Nano), then TensorRT is great for you. Otherwise, tools like OpenVINO can be

handy for optimizing deep learning models for CPUs.

3.3.1 Optimize Tensorflow models

TensorRT is closely integrated with TensorFlow. Figure 3.3 illustrates the workflow of

optimizing a TensorFlow model.

Figure 3.3 Optimizing a TensorFlow model.

30 CHAPTER 3 AI inference in practice

A TensorFlow model is usually stored in the “SavedModel” format, which is then loaded

and used in inference. With TensorRT, a series of steps is carried out to first convert

this SavedModel into an optimized version. This optimized SavedModel can be loaded

in the same way for inference. The additional steps can be integrated seamlessly with

the existing workflow.

3.3.2 Optimize PyTorch models

Torch-TensorRT is an integration for PyTorch that leverages inference optimizations

of TensorRT on NVIDIA GPUs. With just one line of code, it provides a simple API that

gives up to 6x performance speedup on NVIDIA GPUs.

Torch-TensorRT acts as an extension to TorchScript. It optimizes and executes com-

patible subgraphs, letting PyTorch execute the remaining graph. PyTorch’s compre-

hensive and flexible feature sets are used with Torch-TensorRT that parse the model

and apply optimizations to the TensorRT-compatible portions of the graph.

As figure 3.4 indicates, there are multiple pathways of converting a PyTorch model

using TensorRT. Multiple runtimes are supported, including Tensorflow, custom

python and C++.

Figure 3.4 Supported conversion paths and runtimes for PyTorch in TensorRT.

After compilation, using the optimized graph is like running a TorchScript module

and the user gets the better performance of TensorRT.

3.4 Deploy inference with Triton Inference Server

After the model is optimized, it needs to be deployed via an inference server frame-

work. The NVIDIA Triton Inference Server is an open-source solution for deploying

deep-learning models on both CPUs and GPUs, with support for a wide variety of

frameworks and model execution backends, including PyTorch, TensorFlow, ONNX,

 31Deploy inference with Triton Inference Server

TensorRT, XGBoost, LightGBM, Scikit-Learn Random Forest, and RAPIDS cuML Ran-

dom Forest. Triton’s features include dynamic batching, model ensembling and CPU/

GPU execution. Its Docker container integrates with hosted Kubernetes services such

as AWS EKS, Google GKE, and Azure AKS. And it is also available in Managed CloudAI

workflow platforms such as Amazon SageMaker, Azure ML, and Google Vertex AI.

For more information about using Triton, please refer to the following link: https://

developer.nvidia.com/triton-inference-server/get-started.

Figure 3.5 Triton Inference Server framework on a highly scaled production deployment.

Figure 3.5 shows Triton at work. As shown in the figure, Triton can operate on a com-

pute cluster, serve various front-end applications and end users, and provide dynamic

model substitution using a connected model repository, all on self-hosted or cloud

infrastructure. These features are reliable in demanding production environments,

making it a likely choice for deployments at a scale similar to those mentioned in the

case studies in chapter 2.

3.4.1 When to use Triton

Triton can be used in a range of scenarios. It can run on a CPU, GPU, and other accel-

erators. It can run on beefy machines in the cloud and also small edge computers such

as Jeston Nano. Models trained with most major machine learning frameworks can be

deployed using Triton.

Triton does require the model files and associated metadata to be organized in a cer-

tain way. But you may find it to be a small overhead compared to the potential benefits

in latency, throughput, and a well-structured deployment process.

https://developer.nvidia.com/triton-inference-server/get-started
https://developer.nvidia.com/triton-inference-server/get-started

32 CHAPTER 3 AI inference in practice

3.5 Recipes for different data types

In this section, we focus on practical recipes for different data types when deploying

inference.

3.5.1 Tabular data

Ubiquitous in business applications, tabular data is data organized in a table consist-

ing of rows that share the same set of columns. Many use cases rely on tabular data,

such as predicting the probability of a user clicking on a search result, forecasting cus-

tomer churn, and predicting if a medicine is effective on a group of patients. This is a

domain where both deep learning and more traditional machine-learning models may

shine. Gradient-boosted trees and sometimes logistic regression models demonstrate

great accuracy when the problem can be formulated as a standard classification or

regression problem. When multi-task learning, or a highly customized prediction path

is needed, deep-learning models can provide additional flexibility.

TRAINING-INFERENCE DATA GAP

With tabular data we dive deeper into the common pitfall in deploying models: the

gap and inconsistency between training and inference data. Often, a complex data

pipeline is used to prepare training data. Different tables are joined. Feature aggre-

gation, bucketing, vocabulary building, encoding, and feature crossing are applied.

When data is missing or incomplete, imputation is done to backfill data. All of these

steps have various parameters.

Now at inference time, what provides the data is often a separate data pipeline opti-

mized for production-level speed and reliability. If the version of data schema and fea-

ture transformation in production differs from offline model training, the model’s

accuracy may be much worse than demonstrated during offline evaluation. It is very

easy to make this mistake, even when great care is taken. There can simply be too many

parameters and data schema versions to keep track of. Adding to the complexity, some

data available during training may not be readily available during inference, due to lag

of data logging, ingestion, and processing that can happen upstream for various rea-

sons. This problem is amplified when there are multiple models that depend on one

another’s output. An error in the input data can propagate multiple times and cause

larger and larger deviation from expectation.

Mitigation strategies include diligent testing and monitoring. Unit and integration

tests can be put in place to test the parity between the feature transformation used in

model training versus that deployed in production. If the feature transformation in

production gives different results from the one used in model training, there is likely an

error in the version of data schema, feature transformations, or their integrations. Tests

can uncover such issues early, preventing problematic deployments.

After deployment, monitoring is a powerful tool to surface data problems. It is good

to have parity between statistics of training data and that of live production data. Here is

an incomplete list of metrics one should look for when doing monitoring:

 33Recipes for different data types

¡	Feature shapes

¡	Minimum, maximum, mean, and standard deviation of feature values

¡	Number of NaN and missing values

¡	Word clouds or pie charts for vocabularies and categorical variables that have

new values over time

¡	Sudden increase or decrease of average feature values

These metrics can be tracked and visualized in a way that is easy to understand, share,

and present to the stakeholders.

INFERENCE USING TREE-BASED MODELS

With Triton, you can use the FIL backend for tree-based models implemented in

XGBoost, LightGBM, Scikit-Learn or cuML. Figure 3.6 shows schematic illustration of

a typical workflow to produce a tree-based ensemble model.

Figure 3.6 How a tree-based ensemble model is produced.

As you can see, a tree-based model typically includes multiple decision trees, and its

prediction is the weighted average of prediction from individual decision trees.

INFERENCE USING DEEP-LEARNING MODELS

A wide variety of deep learning models have been proposed for tabular data, such as

wide-and-deep, TabNet, non-parametric transformers, and 1D CNN. Both PyTorch

and Tensorflow implementations of these models are publicly available and can readily

be deployed with Triton.

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/
https://scikit-learn.org/
https://github.com/rapidsai/cuml
https://arxiv.org/abs/1606.07792
http://arxiv.org/abs/1908.07442,%20arXiv:1908.07442
https://arxiv.org/abs/2106.02584,%20arXiv:2106.02584
https://github.com/baosenguo/Kaggle-MoA-2nd-Place-Solution

34 CHAPTER 3 AI inference in practice

3.5.2 Time series data

Time series data refers to data where one or more variables are recorded over time,

most often at a consistent interval. Businesses use time series data to assist in sales fore-

casting, predictive maintenance, patient health trajectory forecasting, algorithmic

trading, and many other use cases. Most best practices for tabular data also apply to

time series data. However, time series data also has some unique challenges:

¡	The trend in the data tends to change in the long term. Models that work well in

one historical time period may not be accurate for future data.

¡	Beside long-term trends, seasonality is typically present in time series data. There

can be different granularities of seasonality at varying time scales, including

monthly, daily, or hourly.

¡	Because the long-term trend and seasonality may change due to market shift and

rare global events, the model needs to be refreshed with new data. It is also desir-

able to avoid over-confident predictions which fall apart when dramatic changes

happen.

¡	Multi-step prediction is common, where prediction is done progressively for one

time period after another. A prediction can depend on the prediction of the pre-

vious time period. As a result of this recursive inference, errors can propagate as

we predict further into the future.

¡	The inference system may need to handle inconsistencies from different time

zones and transitions like daylight saving time.

Modeling techniques for time series data have evolved over time, resulting in a range

of model types implemented in different machine-learning frameworks.

Statistical models such as ARIMA and SARIMA are well studied and often provide a

strong baseline for a wide range of time series problems. Careful hyperparameter tun-

ing may be needed for ARIMA models to work well. Prophet (or FBProphet) further

decomposes time series data into a long-term trend, seasonality, and change points.

Deep-learning models such as RNN, LSTM, and Transformers have gained pop-

ularity in recent research. The sequence nature of time series data makes it suitable

to be modeled by these architectures. There have been hundreds of recent research

papers on this topic in the last three years. As an example, Autoformer was shown to

be effective in energy, traffic, economics, weather and disease use cases. Merlion is a

recent open-source library that supports classic statistical methods, tree ensembles, and

deep-learning approaches. The graph in figure 3.7 illustrates the architecture of typical

transformer-based models for time series.

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://facebook.github.io/prophet/
https://github.com/thuml/autoformer
https://github.com/salesforce/Merlion

 35Recipes for different data types

Figure 3.7 A typical architecture of transformer-based models for time series data.

Let’s do a brief walkthrough of figure 3.7 to give you a broad idea of how the architec-

ture is arranged. The data is preprocessed with normalization and missing data impu-

tation. Sometimes it is decomposed into seasonal components and long-term trends.

Then, positional encoding is performed on the global date and time (year, month,

day) and holidays. The positional encoding is combined with the embeddings of other

input variables to form the input to the Encoder module. The Encoder module con-

sists of multiple Transformer blocks with Multi-Head Attention layers. At inference

time, the Encoder output is combined with an optional “prompt” and passed to the

Decoder module. The Decoder module either outputs single-valued predictions or

repeatedly produces a sequence of output tokens in an auto-regressive fashion.

In terms of deployment, statistical models are usually implemented in SciPy, NumPy,

statsmodels and stan, and, with the Triton server, can be deployed using Triton’s custom

Python backend. Deep-learning models are often implemented in PyTorch (this is the

case for both Autoformer and Merlion) or Tensorflow, with the corresponding back-

end in Triton.

3.5.3 Image and video

The trend in computer vision models has been higher accuracy as the size and depth

of the model increases. Two types of models have gained popularity recently:

¡	Vision transformers that incorporated self-attention mechanisms to model long-

range interactions of image features.

¡	ConvNext and other improved convolutional networks that improved upon

ResNet, the previous state-of-the-art, by increasing network width, tuning resid-

ual block shapes, and using better optimization algorithms.

These are backbone or foundational models that can be used as building blocks for

downstream tasks such as semantic segmentation, object detection, and image retrieval.

https://github.com/triton-inference-server/python_backend

36 CHAPTER 3 AI inference in practice

CONSISTENCY OF PRE-PROCESSING BETWEEN TRAINING AND INFERENCE

The pre-processing of images can significantly influence the prediction output. So, it

is important to make sure that the pre-processing is consistent between training and

inference. The pre-processing steps also benefit from GPU acceleration and Triton

provides readily made modules to run pre-processing in addition to inference (exam-

ples can be found in this link). Here are some common pre-processing steps.

RESIZING

Many pre-trained models require input images to be resized to a constant shape such

as 224 x 224 pixels. While the inference may still work when you supply it with an image

of different size (if the model is fully convolutional), the prediction accuracy tends to

be lower.

Another common resizing option is to resize the longer side of an image to a target

dimension while keeping the aspect ratio. This method avoids distortion of the image

and is often used for object detection models.

NORMALIZATION

Three types of normalization for pixel intensity values are commonly used. One is stan-

dardization with pre-computed stats, where the pixel intensity is subtracted from the

mean of a dataset and divided by the standard deviation of the dataset. The second

type is per-image standardization, where each image is normalized to have zero mean

and unit variance, based on mean and standard deviation of the specific image. Addi-

tionally, there is min-max normalization, where the pixel intensity is normalized to the

range between 0 and 1.

The choice of the normalization method tends to have little impact on the accuracy.

But it is important to keep it consistent between training and inference.

TEST-TIME AUGMENTATION

Image augmentation, usually applied during model training, generates more variety in

the training data and helps the model generalize better to new data. Its counterpart,

test-time augmentation (TTA), is the aggregation of predictions across transformed

versions of a test input, which is shown to improve prediction accuracy. The trans-

formations include flipping, cropping, and scaling of the input image. They are easy

to apply and do not change the model itself. The downside is that more compute is

needed as the number of transformations increases.

EFFICIENT VIDEO PREPROCESSING WITH KEY FRAMES

Inference on video can pose a scale challenge, because a video is a long sequence

of images, with thousands of frames. Making use of keyframes and delta frames can

greatly reduce the number of images needed to be processed. To track objects over

time and compute pixel correspondence from one frame to the next, block motion

vectors in MPEGs can be used in lieu of the more computationally expensive optical

flow.

https://github.com/triton-inference-server/python_backend/blob/main/examples/preprocessing/README.md
https://arxiv.org/abs/2011.11156

 37Recipes for different data types

3.5.4 Natural language

Similar to computer vision models, large language models got more accurate and

larger over time. The graph in figure 3.8 shows the size of the model over years. From

the 94 million parameters of ELMo in 2018 to 175 billion parameters of GPT-3 in 2020,

the increase was more than 100 times.

Figure 3.8 The size of state-of-the-art NLP models has increased steadily over the years. (Source.)

Transformer-based architectures drove much of the recent progress in the accuracy

of language models. Figure 3.9 shows a typical architecture of Transformer models.

Different from other types of neural networks, a Transformer model typically includes

a positional encoding module that preserves information from the ordering of input

sequence, and a set of highly parallel Multi-Head Attention layers that encourage the

flow of information among different parts of the data. These Multi-Head Attention lay-

ers are powerful and computationally expensive. They form the building block (a.k.a.

Transformer block) of Transformer models. There are typically multiple repeated

Transformer blocks in a model. Such mechanisms allow the representation of contex-

tual relationships between words across longer distances than previous models and can

do so in parallel rather than in a sequential manner.

https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/
https://arxiv.org/abs/1706.03762

38 CHAPTER 3 AI inference in practice

Figure 3.9 A typical architecture of Transformer models.

Large language models pre-trained on huge corpora already encode much of language

structure, so it does not take a large amount of data to fine-tune the model to capture

new concepts. A few hundred new examples can be enough to retrain the next version

of the model. This enables few-shot learning or even one-shot learning use cases.

While powerful, large language models tend to be large and compute intensive due

to the quadratic complexity when relating each token with every other token. Trans-

former models have millions or even billions of parameters, which can pose challenges

when deploying them for inference in production. Some models may not even fit in the

memory of a large GPU, and in such cases multi-GPU and multi-node executions can be

needed for inference.

Triton backends like FasterTransformer can accelerate the inference speed of trans-

former models and lower the cost. In particular, FasterTransformer contains the imple-

mentation of the highly-optimized version of the Transformer block that contains the

encoder and decoder parts. It supports the inference of large Transformer models in

a distributed manner using multiple GPUs. Figure 3.10 shows a couple of transformer

blocks distributed between four GPUs using tensor parallelism (tensor MP partitions)

and pipeline parallelism (pipeline MP partitions).

Figure 3.10 Inference acceleration of Transformer models. (Source)

https://github.com/NVIDIA/FasterTransformer/
https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/

 39Recipes for different data types

The speedup with Triton's FasterTransformer backend is significant, achieving 8x to

30x compared with using unoptimized Pytorch models on CPU, as shown in the graph

in figure 3.11 (image source).

Figure 3.11 Triton provides significant speedup of large language model inference. (Source.)

Having a successful deployment of NLP models is not the end, but the beginning, of a

journey to realize business value. It is important to continuously evolve the inference

through retraining. As new words and concepts appear in the corpus (for example,

the phrase COVID-19 did not exist before 2019), the datasets and labels need to be

updated, vocabulary and tokenizer refreshed, and the model retrained.

3.5.5 Speech recognition

Automatic speech recognition (ASR) is compute-intensive and requires a powerful and

flexible platform to power modern conversational AI applications. There are unique

challenges for inference on speech data. For example, when running inference on

multiple sets of utterances, the inference server must restore the previous state of the

components in order to maintain context. To do so, an utterance is represented as a

sequence of audio chunks, and each audio chunk from a given sequence is associated

with a sequence ID. In addition, inference often needs to be completed in real time,

https://developer.nvidia.com/blog/accelerated-inference-for-large-transformer-models-using-nvidia-fastertransformer-and-nvidia-triton-inference-server/
https://developer.nvidia.com/blog/accelerated-inference-for-large-transformer-models-using-nvidia-fastertransformer-and-nvidia-triton-inference-server/

40 CHAPTER 3 AI inference in practice

putting a high standard for latency and throughput. Moreover, multiple models can be

involved with a speech recognition application: from speaker counting and identifica-

tion, to the core speech recognition model.

Figure 3.12 shows a typical pipeline for ASR deployed with Triton, using Kaldi, a pop-

ular framework for automatic speech recognition.

Figure 3.12 An accelerated end-to-end pipeline for automatic speech recognition (ASR).

The raw input contains multiple utterances. They are processed by a Feature Extraction

and Sampling module. The inference server receives chunks of audio, each containing

an amount of data samples and associated with an ID to indicate it belongs to a certain

sequence. Extracted features are sent to an Acoustic Model for classification. Using the

likelihoods produced by that classification, and with the help of an HMM Language

Model Decoder, you can determine the most likely transcription for that audio.

3.6 Recipes for complex inference tasks

In the previous section, we discussed recipes for deploying inference for various data

types. They can be readily applied to specialized inference tasks such as computer

vision, natural language processing, speech AI, and fraud detection. In this section, we

combine the recipes on more complex inference tasks that can involve multiple data

types and multiple inference steps.

3.6.1 Text2Image

From social network feeds, you likely have seen intriguing photos that look realistic but

cannot be real. These photos are generated by text2image models like CLIP, DALLE,

IMAGEN, and Stable Diffusion that gained popularity in the last few years. Using a

text prompt such as “Santa traveled to the moon”, the model can generate (or “dream

up”) a vivid picture with stunning details, even if there is no way to collect historical

https://kaldi-asr.org/
https://arxiv.org/abs/2103.00020
https://cdn.openai.com/papers/dall-e-2.pdf
https://cdn.openai.com/papers/dall-e-2.pdf
https://arxiv.org/abs/2112.10752

 41Recipes for complex inference tasks

data about such images. A large amount of text and image data is used to produce such

models.

Figure 3.13 shows the architecture of the Stable Diffusion model that consists of a

text encoder that translates text into a vector space, and a diffusion model that trans-

lates this vector into a high-resolution image. We made this Santa image using a desktop

computer with a RTX 3090 GPU card and the open-source code downloaded from the

stable diffusion paper.

Figure 3.13 Architecture and sample result from Stable Diffusion, an image generation model.

The word big does not do enough justice to the size of these models, because many

of them are composed of large language models (as text encoders) as well as large

generative models (such as diffusion models), each containing millions or billions of

parameters.

Deploying such models in practice can prove to be difficult as the whole model may

not fit in a single GPU. Triton utilizes all available GPUs automatically when the server

has multiple GPUs, which allows you to focus on machine learning and business logic,

rather than managing device memories and handling server crashes.

3.6.2 Recommender systems

Recommender systems process data about users and items, and rank items for each

user such that the top-ranked items are more interesting to the user, resulting in more

engagement, conversions and long-term retention. Depending on the use case, tabu-

lar, text, image, and audio data may be used as part of input data.

https://arxiv.org/abs/2112.10752

42 CHAPTER 3 AI inference in practice

Though there are many ways to approach this problem, recent advances largely

converged on neural network-based approaches where both users and items are repre-

sented by floating point vectors (a.k.a. embeddings). By doing so, both users and items

are represented as vectors in a high-dimensional space. When a user vector is close to an

item vector, the user is more likely to engage with the item. These embedding models

for users and items can be trained using the user’s viewing, clicking, and purchasing his-

tory of items. When there are more interactions (e.g., clicks) between a user-item pair,

the training algorithm nudges their embedding vectors to be closer. A simplified view of

an embedding based recommender model is shown in figure 3.14.

Figure 3.14 A schematic illustration of a recommendation engine model that predicts user clicks.

As you can see in the figure, numerical features and categorical features are extracted

from raw data, and additional pairwise interaction features are created to capture

their inter-dependencies. This set of features are then concatenated and passed to a

feed-forward network (such as a multi-layer perceptron, or MLP) to produce the pre-

dicted probability of the user clicking on an item.

Compared to pure NLP models where compute is still the dominant factor in

throughput, deep-learning recommenders tend to be heavier in terms of their mem-

ory footprint. The embedding tables in modern recommenders can reach multiple

 43Recipes for complex inference tasks

terabytes, often exceeding the capacity of CPU or GPU memory, and involve pure mem-

ory lookup operations. The MLP portions remain relatively much smaller in compari-

son, making deep-learning recommenders memory-bound.

Accessing embeddings often generates a scattered memory access pattern. This can

create challenges in memory systems, making them inefficient. NVIDIA GPUs have a

highly parallelized memory system that has multiple memory controllers and address

translation units, which is great for scattered memory accesses. Additionally, with the

latest NVIDIA GPU technology, multi-GPU and multi-node GPU memory capacities are

getting sufficiently large for large embeddings.

Traditional recommendation algorithms, such as collaborative filtering, usually

ignore the temporal dynamics and the sequence of interactions when trying to model

user behavior. However, users’ preferences do change over time. Sequential recommen-

dation algorithms can capture sequential patterns in the users’ browsing that might

help predict the users’ interests for better recommendation. For example, users who

are starting a new hobby such as cooking or cycling might explore products for begin-

ners and may move to more advanced products over time. They may also completely

move on to another hobby of interest. Therefore, recommending items related to their

past preferences would become irrelevant.

A special case of sequential recommendation is the session-based recommendation

task where you only have access to the short sequence of interactions within the current

session. This is very common for online services like e-commerce, news, and media por-

tals where the user might be brand new or prefers to browse anonymously, and no cook-

ies are collected as a result of GDPR compliance. This task is also relevant for scenarios

where the user’s interests change a lot over time depending on the user’s context or

intent, so leveraging the current session interactions is more promising than old inter-

actions to provide relevant recommendations.

Transformer architectures can provide more accurate recommendation for sequen-

tial and session-based recommendation. The Transformers4Rec library, for example,

makes developing transformer-based recommender systems much easier.

3.6.3 Conversational AI

Conversational AI is another example of real-world applications where multiple mod-

els are needed to make it work end to end. As shown in figure 3.15, the user may take

a photo of a flower and ask a question to her smartphone using speech: “what type of

flower is this?” After a second, the phone answers: “That’s a French Rose.” During this

blink of time, three types of data: image, speech audio, and text were passed back and

forth between at least four machine-learning models and inference services. First, the

speech audio was processed by the audio pipeline and converted to text. Next, the

photo of the flower was processed by a computer vision model to classify its category.

Then a recommender system ranks the potential answers and picks one that best suits

https://github.com/NVIDIA-Merlin/Transformers4Rec

44 CHAPTER 3 AI inference in practice

the user’s needs. Finally, the answer was converted to a natural voice using a text-to-

speech pipeline.

Figure 3.15 Real-world conversational AI applications use many models.

Each type of model has a different requirement for compute (CPUs and GPUs). To

ensure a smooth user experience and a manageable total cost of ownership for the

inference services, the throughput of the whole system needs to be optimized. As the

throughput of the whole system depends on its bottleneck, a.k.a. the slowest part, more

compute resources often need to be allocated to the inference model that has the larg-

est number of parameters. This means allocating larger GPUs, CPUs, and more virtual

machines to the bottleneck inference service. Autoscaling is often used to dynamically

adjust the allocation of compute resources based on usage, to scale up when more

users appear and scale down when the service is mostly idle.

3.7 Deployment process and best practices

The complexity of deploying inference, mentioned in the beginning of this chapter,

is in the environment where inference operates. It is one thing to deploy inference in

a controlled and isolated environment, and it is another thing to deploy inference in

a production environment where many factors come into play. These factors include:

¡	Upstream data that feed into inference

¡	Downstream applications that consume

¡	Compute resources that carry out inference

¡	Rollout of new inference models

¡	Stakeholders that are responsible for the deployment, monitoring and mainte-

nance of the inference system

It takes a village to handle all these factors. Cross-functional collaboration is needed

among teams responsible for data, machine learning, DevOps, and business stakehold-

ers. To give you an idea of how this collaboration might work, we’ve mapped out the

inference deployment tasks and the teams that usually handle them in figure 3.16.

 45Deployment process and best practices

Figure 3.16 The success of inference deployment in a production environment depends on multiple factors outside

the inference system itself. The number and complexity of these factors require cross-collaboration between many

teams.

In this section, we will discuss different aspects of the deployment process and best

practices for deploying inference.

3.7.1 Managing changes in upstream data

Data is dynamic, just as the business events happening day to day. If input data to infer-

ence changes, it is important to proactively anticipate such changes and make sure that

the inference system can handle them.

Here are some ways the upstream data may change:

¡	New trends in the data can emerge. For example, the COVID-19 pandemic has

caused sea changes in how people live and work, and as a result the data collected

reflects this.

¡	The user group of the data can change. Expanding a product from California to

Florida, for example, may mean a shift in the distribution of certain features.

¡	New feature types can appear as the product or service evolves. For example, a

new type of user conversion may become available.

46 CHAPTER 3 AI inference in practice

¡	An existing feature may become unavailable or deprecated.

¡	Adversarial actors such as fraudsters may actively seek out opportunities to use

bots to influence ranking positions or fake clicks, causing pollution of data.

¡	Underlying technical systems may change. For example, during daylight saving

time, certain software packages may not cope with the time change and can yield

unexpected effects.

¡	Delays and interruptions in the data may occur, due to server disruptions or

other unexpected technical disruptions. This can cause missing data or problem-

atic aggregated data.

To cope with these challenges, being aware of the possible complications is a good first

step. For critical inference deployments, dedicated engineering resources should be

allocated, and tools put in place to monitor upstream data, perform quality control,

and alert the stakeholders if any changes are detected.

As mentioned in Breck et. al (2017), “it can be difficult to effectively monitor the

internal behavior of a learned model for correctness, but the input data should be

more transparent. Consequently, analyzing, and comparing data sets is the first line of

defense for detecting problems where the world is changing in ways that can confuse

an ML system.” A number of tests were proposed in this paper regarding readiness of

production machine-learning systems. Most relevant to this section are two examples of

them:

¡	Training and inference features compute the same values.

¡	Changes in dependences result in a notification.

Feature stores are MLOps tools that can alleviate the pain points in managing changes

in upstream data. It combines data from various data sources and turns it into a single

source of truth for features. As illustrated in figure 3.17, a Feature Store often has

Offline and Online stores which maintain consistency between how features are gen-

erated. The Offline store is consumed by Model Training and the Online store is con-

sumed by Deployed Inference. As an example, Feast is an open-source feature store

that connects upstream data sources for streaming data (e.g., Kafka and Kinesis) as

well as batch data (e.g., BigQuery, S3, Snowflake). The workflow illustrated in figure

3.17 underscores the importance of maintaining separate Online and Offline feature

stores in a deployed inference context. The consistency of data preparation proce-

dures between offline model training and online production inference reduces the

risk of faulty deployment of ML inference.

https://research.google/pubs/pub46555/
https://github.com/feast-dev/feast

 47Deployment process and best practices

Figure 3.17 A typical workflow for using Feature Stores to manage inference where the gap between offline and

online data is reconciled.

3.7.2 Managing integration with downstream applications

Predictions from inference models are rarely the end of the story. They are often used

to drive the behavior of downstream applications that more directly interface with

users. In a real-time ad-bidding system, for example, a CTR (click-through rate) pre-

diction model is typically built to predict the chance that a particular ad will be clicked

by a user. The predicted CTR is then used as an input to the pricing policy, which

decides the final bid price based on the campaign budget, target CPM (cost per mile),

win rate, competitive landscape, pacing requirements, as well as the predicted CTR.

The scenario of inference integration varies greatly depending on the use case, prod-

uct, and industry. Close collaboration between business operations, product owners,

data scientists, machine-learning engineers, software engineers, and DevOps is often

necessary to release the full potential of the inference system.

3.7.3 Managing compute resources and trade-offs in speed, reliability, and cost

Typically, the more CPUs are available on the server, the faster the inference runs,

with higher throughput and lower latency. ML models can take advantage of parallel

threads to run inference faster. If latency is the main concern, one may use large virtual

machines with many CPUs or with a GPU.

Multi-model serving can achieve low latency at low cost by dividing the costs across

many models. Peak load for different models occurs at different times. As a result, multi-

model inference incurs a significantly lower cost without sacrificing latency. Large lan-

guage models and computer vision models can require a lot of memory to run. On

CPUs, the inference can take seconds or even minutes to run. On GPUs, the inference

is much faster, but GPU memory is scarcer than CPU memory. When a single GPU is not

enough to hold a very large model, multi-GPU, and multi-node inference is necessary.

NVIDIA Triton uses two model parallelism techniques:

48 CHAPTER 3 AI inference in practice

¡	Pipeline (Inter-Layer): Parallelism that splits contiguous sets of layers across multi-

ple GPUs. This maximizes GPU utilization in a single node.

¡	Tensor (Intra-Layer): Parallelism that splits individual layers across multiple GPUs.

This minimizes latency in single-node scenarios.

Out-of-memory (OOM) errors can occur during inference even after the model can be

loaded and executed successfully to predict a number of examples. This is typically due

to memory leak issues, where graph operations and additional overhead are created

and accumulated after each prediction. Monitoring memory usage over time can help

identify the issue.

Autoscaling is a great way to horizontally scale to tens or hundreds of machines,

capable of handling large volumes of data. The machines are stopped and started as

needed, and the cost saving is significant. However, there can be a cold-start problem.

As queries ramp up, while the machines are being started, a number of queries can wait

in line for a while or even fail. By increasing the minimum number of inference nodes

(sometimes called warm nodes), such cold-start problems can be relieved, and the sys-

tem can handle the queries with lower latency. It is a trade-off between cost and latency.

Due to the size of some models, loading and initialization can have significant over-

head as well. Components of the model may also be lazily initialized. These factors cause

high latency in the first inference, which can be several orders of magnitude higher

than that of a typical inference request. By sending a sample of inference requests to

warm up the system, the latency can be reduced.

3.7.4 Rollout of new inference models

Imagine a new inference model is trained, and offline evaluation shows promise of

improvement. The model is deployed and ready to serve prediction requests. Rolling

out the new inference is a source of excitement and anxiety at the same time. What if

the new inference model is less accurate? How do you find out? Can the new inference

deployment handle production traffic? What if an unexpected crash happens? Here

are a few tools to make the rollout of new inference models smoother.

SHADOW MODE

“Shadow mode” refers to the process of deploying a new inference model, where both

the new model and the current in-production model are used to calculate predictions,

but the predictions of the new model are not used by the production system to affect

user experience. Predictions from the new model are typically saved for further anal-

ysis, such as side-by-side comparison with the current model. Is the new model more

accurate than the current model on live production data? Does it run slower? Does

it require more compute and memory? Is it robust to fluctuations in the input data?

These questions can be answered during shadow mode deployment.

A/B TESTS AND MULTI-ARMED BANDITS

Offline evaluation can demonstrate good model performance on historical data, but it

cannot establish causal relationships between a new model and better user outcomes.

 49Deployment process and best practices

A/B testing is a common way to compare two or more models on a fair ground, by per-

forming a randomized controlled trial. Sufficient time and data is needed to establish

an adequate statistical power (probability of an improvement successfully detected)

and significance (also known as p-value, probability of getting a false positive). Peek-

ing and early stopping are common pitfalls which can result in a non-improvement

being falsely identified as an improvement. There is also a risk of lost business outcome

during the course of the test, if the new model turns out to be significantly worse than

the current one.

Bayesian A/B tests can be used to provide a more intuitive interpretation of the test

and robustness against peeking. Instead of p-values, you get direct probabilities on

whether the new model is better than the current one and by how much.

Multi-armed bandits (MAB) learn from data gathered during a test while dynami-

cally increasing the allocation in favor of better-performing variations. This optimizes

business outcomes while performing a test.

3.7.5 Metrics for monitoring the inference system

Here we describe typical metrics for monitoring the inference system.

STANDARD MACHINE-LEARNING METRICS

Machine-learning metrics are useful for data scientists and machine learning engi-

neers to keep track of the quality of the inference model and diagnose problems early.

The metrics can be specific to the type of model being used. For example, computer

vision models use a different set of metrics than natural language models.

¡	Accuracy: The fraction of examples that are correctly classified. This is useful for

binary, multi-class, and multi-label classification models.

¡	Mean average precision (mAP): This is the area under the curve for the precision

recall curve. It is useful for information retrieval models, object detection mod-

els, and classification models. For object detection models, an IoU (bounding

box overlap) threshold is usually chosen beforehand. It is sensitive to label imbal-

ance in the data.

¡	AUROC: This is the area under the ROC curve. It is useful for classification mod-

els. It is not sensitive to label imbalance in the data.

¡	NDCG: This is the normalized discounted cumulative gain. It is useful for ranking

models.

SERVICE-LEVEL METRICS

Service-level metrics are useful for machine learning engineers and DevOps engineers

to monitor the quality of the deployment.

¡	Latency: The time it takes for a prediction to be made. Percentile statistics are

often instrumental to collect and display.

¡	Throughput: The number of predictions per second.

50 CHAPTER 3 AI inference in practice

¡	CPU utilization: The percentage of CPU time used by the inference system.

¡	GPU utilization: The percentage of GPU time used by the inference system.

¡	Memory utilization: The percentage of memory used by the inference system.

¡	Disk utilization: The percentage of disk used by the inference system.

¡	Number of nodes: The number of VMs, containers or pods being used by the infer-

ence system.

BUSINESS METRICS

Business metrics is used to communicate the health of an inference system to execu-

tives, product management, and other business stakeholders. There can be thousands

of business metrics specific to use cases, r verticals, markets, and product lines. Some of

the most common ones are:

¡	CTR: Click-through rate. The probability that a user clicks on a document, a

product, or an ad.

¡	Conversion rate: The probability that a user adds a product to cart, purchases a

product, or subscribes to a service.

¡	CPC: Cost per click. Mainly used in advertising use cases.

¡	Hours saved: The number of manual hours saved by using the inference system to

automate business processes.

3.7.6 Teamwork and stakeholder involvement

Ensuring and maintaining the quality of the inference system requires teamwork. The

typical roles directly responsible for the inference system are:

¡	DevOps and ML-ops: They are responsible for provisioning sufficient compute

resources to run inference. Production issues such as latency spike, throughput

dip, connectivity disruptions, and server crashes are best addressed by this role.

Out-of-memory errors are trickier, because this may be a resource provisioning

problem, or it could be a memory leak due to the implementation of the infer-

ence model. The turn-around time is typically short.

¡	Machine learning engineers: They are responsible for optimizing and deploy-

ing inference models. It is a continuous improvement process to keep accu-

racy, latency, throughput, and cost in check, while new models are trained and

deployed. Drifts and anomalies in model predictions are monitored and actions

taken to mitigate them. The turnaround time can be short to medium.

¡	Data engineers: They are responsible for quality and preprocessing of the upstream

data feeding into inference systems. The production data should match that of

offline data used in model training. Drifts, anomalies, and missing data are best

addressed by this role. The turn-around time can be short to medium.

 51Code lab: Deploy inference for reverse image search

¡	Data scientists: They are responsible for research and prototyping new models as

candidates to deploy to production. New models that show promise in offline

evaluation may not always translate to real gain when deployed to production.

Results from production inference results should be analyzed, so the model

training algorithms can be adapted and improved. The turn-around time is typi-

cally long.

The roles described here are not a rigid and static view of the team supporting infer-

ence systems. In smaller companies, a person may hold multiple roles, while in larger

companies, there can be a multi-person team for each role.

3.7.7 Enterprise support for AI inference deployment

As AI initiatives move into the production stage, the need for a trusted, scalable sup-

port model for enterprises becomes vital for ensuring AI projects stay on track. NVIDIA

AI Enterprise, designed for enterprise-grade AI development and deployment, is an

end-to-end, secure, cloud-native suite of AI software, enabling organizations to solve

new challenges while increasing operational efficiency. It is available across bare metal,

virtual, container, and cloud environments, reducing the time to move from pilot to

production of AI solutions.

Available in the cloud, the data center, and at the edge, NVIDIA AI Enterprise

offers key features to ensure business continuity: global NVIDIA Enterprise Support

for NVIDIA Triton and TensorRT, guaranteed response times, priority security notifica-

tions, API stability, coordinated support across the full solution and partner products

until resolution, control upgrade and maintenance schedules with long-term support

(LTS) options, and access to NVIDIA AI experts.

A global financial services company selected NVIDIA AI Enterprise to support its

AI initiatives by leveraging the curated AI stack, including NVIDIA Triton Inference

Server, running on certified infrastructure to ensure performance advantage, result-

ing in gaining 20x performance on AI inference that outperformed its existing home-

grown software.

3.8 Code lab: Deploy inference for reverse image search

Now for the fun part! Now that you’ve absorbed all this information, you can get some

hands-on experience coding end-to-end model training and deployment in our cus-

tomized code lab. Your project in this code lab is to build a reverse image search model

server.

The lab is located at https://github.com/kungfuai/triton-inference-examples/

blob/main/reverse_image_search/.

In this code lab, you will download image data from a public dataset, train a deep

learning model or download a pre-trained model, and deploy it with Triton Inference

Server. You will also learn how to use perf_analyzer to profile the latency and through-

put of the inference server. Enjoy!

https://www.nvidia.com/en-us/data-center/products/ai-enterprise/?ncid=pa-so-link-715505#cid=hpc09_p14_pa-so-link_en-us

53

AI has become an invaluable tool for modern businesses, and we are currently on

an upward trajectory that will continue to uncover novel and diverse applications.

The factors that influence the current state of growth (e.g., education, hardware

capabilities, and others) have their own dynamics that affect the broader state of

the AI inference industry. Will the growing pool of engineers and scientists keep up

with industrial demand? Will our algorithms demand more than modern compute

hardware has to offer? Will new regulations fundamentally shift the dynamics of

business in AI?

While the possibilities of the future remain to be seen, we have some hints at

what may lie ahead. Four key areas strongly influence the growth trajectory of the AI

industry: broad AI adoption, algorithms, hardware, and regulatory environments.

We will look at each independently.

4.1 Broad AI adoption

Each year, IBM (in partnership with Morning Consult) releases the Global AI Adop-

tion Index. In their 2022 report, it was revealed that in the past year global AI adop-

tion has increased by 4% to 35%. On top of that, 42% of companies are currently

exploring AI and what benefits it may provide for their businesses. AI can afford

automation and skills to directly address labor shortages, promote sustainability

when human involvement is either too expensive or inaccessible, and provide a mul-

titude of other benefits. “Two-thirds (66%) of companies are either currently exe-

cuting or planning to apply AI to address their sustainability goals,” said the report.

Statements such as these are on the rise.

4The AI inference horizon

https://www.ibm.com/downloads/cas/GVAGA3JP

54 CHAPTER 4 The AI inference horizon

“AI-curious” companies currently face some barriers that may erode over time as

well. For example, up to now, many of these transitioning firms have struggled to shift

prototype applications to production deployments. MLOps tooling that manages

machine learning artifacts in production environments has become available and has

matured to address this gap. Products like MLFlow, Weights & Biases, and Neptune.ai

all help alleviate these production burdens, thus slightly lowering the barrier.

Additionally, adoption for some has been out of reach because of both price and skill-

set. On the price front, some components of the machine-learning lifecycle are starting

to become commoditized, which can make adoption more affordable. Though not all

aspects of the lifecycle can follow this path, simplifying a few steps can make enough of

a difference that business value can be realized. Increased competition also plays a role

in controlling price. The 2022 AI Index Report from Stanford stated that “Since 2018,

the cost to train an image classification system has decreased by 63.6%, while training

times have improved by 94.4%. The trend of lower training cost but faster training time

appears across other MLPerf task categories such as recommendation, object detec-

tion, and language processing, and favors the more widespread commercial adoption

of AI technologies.” At minimum, the price to adopt is on a downward trajectory, and if

more businesses can afford to train their own models, so too can they enable inference

deployments.

The Stanford report also mentions some statistics regarding the talent pipeline

emerging from universities, which, if focused on AI/ML, will enable further adoption

in industry. For instance, in the decade from 2010 to 2020, the number of new com-

puter science (CS) undergraduate graduates at doctoral institutions in North America

grew by a factor of 3.5x and shows a consistent year-over-year growth trajectory. In addi-

tion, 21% of new PhD candidates in 2020 specialized in AI and machine learning, which

is around 3x larger than the runner-up specialty (software engineering). Finally, over

the same 2010-2020 decade mentioned previously, the fraction of new PhD graduates

going to industry grew from around 45% to over 60% (at the expense of post-doctoral

academic careers). The industrial demand and technical appeal of the artificial intelli-

gence sector is garnering more interest for AI in the academic world, which should help

alleviate some of the talent pool issues going forward.

In summary, artificial intelligence adoption is on a sharp upward trajectory. Opti-

mally deployed inference lies at the heart of most industrial applications, and therefore

we should expect healthy market activity around the topic in the coming years.

4.2 Algorithms

A number of algorithmic developments are also lowering the barrier to deploying

optimal prediction pipelines. There exists a constant tug between the algorithms that

demand more computational power and those that seek to make the inference process

more efficient. So far, the former seem to be outpacing the latter, which means that we

continue to demand more and more performance from the hardware that our algo-

rithms rely on.

Regarding the more demanding models, natural language applications, in particu-

lar, seem to be growing in complexity at an incredible rate. In a fairly extreme case, the

https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf

 55Regulatory environments

Megatron-Turing NLG (MT-NLG) model, released in late 2021, demands computation

from 280 billion parameters. These models are continuing to grow in size with each

release, and don’t show signs of a plateau yet. In addition, models like OpenAI’s CLIP,

which learns to generate images using natural language data, are validating multi-do-

main approaches that will also add to model complexity over time. Figure 4.1 illustrates

the accelerated growth of language models over the last several years (note the logarith-

mic scale on the parameter count axis).

Figure 4.1 Graph illustrating large language model (“LLM”) growth over time. Source

By the same token, however, sparsely activated networks (i.e., networks that condition-

ally avoid computation on input samples) are becoming more popular too. Google’s

Pathways architecture is intended to do just that: avoid unnecessary computation that

only marginally contributes to prediction quality. Mixture of experts (MoE) models

attempt to accomplish the same goal and have demonstrated success in production

applications, as mentioned in the Microsoft Translator case study in chapter 2.

Ongoing algorithmic developments will continually demand more from the hard-

ware we perform computations on, and therefore deployment efficiency remains para-

mount now more than ever.

4.3 Regulatory environments

Going back to the Stanford report, the number of bills passed into law that contain

mentions of “artificial intelligence” grew from just 1 in 2016 to 18 in 2021. Clearly, gov-

ernmental interest in artificial intelligence as a whole is increasing. However, though

restrictive, regulatory compliance can also create business opportunities.

https://arxiv.org/abs/2201.11990
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

56 CHAPTER 4 The AI inference horizon

Tools around fairness, model explainability, and bias mitigation especially will

become more and more important as discrimination inherent in deployed models

begins to affect the general populous more deeply. Credit determinations, housing

decisions, and other choices that underpin the lives of most individuals will be looked at

under a magnifying glass. As a rule, the larger the impact, the larger the level of scrutiny

we can expect going forward.

Though trustworthy AI, fairness, and bias mitigation is a nascent field, assessing the

risks will become very important for companies that build products and services affect-

ing individuals. This underpins the very nature of how we perform inference, and espe-

cially how we monitor inference once it begins to touch people in their daily lives.

4.4 Additional trends

In our personal experience as AI consultants, we are seeing a rise in demand for AI

business strategy consulting services. Businesses want to know that the problem they

are trying to solve will generate value once put into play. Many companies have com-

pleted perfectly well-executed engagements, only to find that the eventual delivery was

devoid of any true value creation. The importance of strategy work that ensures the

most “bang for buck” is becoming incredibly important, and organizations are finding

that a lot can be accomplished with relatively little. It’s often the case, for example,

that partial automation with human supervision results in higher quality outcomes,

as opposed to full automation with untraceable mistakes. Time will tell who has suc-

ceeded to deploy the right inference solution in the first place, let alone properly exe-

cuted ones.

There also seems to be a push toward more standardization. In the same way that

containers revolutionized software deployments, model format and inference deploy-

ment standards (such as ONNX and NVIDIA Triton, respectively) are allowing engi-

neers across a wide variety of industries to speak the same language. This will have a

positive effect on the pace of innovation.

Finally, the rise of an open-source culture around AI/ML is having a massive impact

on the state of machine learning model deployment in production. Small start-ups are

finding access to the work of a huge network of talented engineers, which enables them

to create high quality products in record time. Oft-utilized open-source libraries (such

as PyTorch, Scikit-Learn, and Tensorflow, to name a few) are able to respond quickly to

bug fixes due to their respectively huge communities of users and developers, as well as

feature requests. The amount of activity surrounding the space is at a record high and

shows no signs of slowing down. Because of this, it is all but imperative that businesses

make sound decisions around inference tooling.

4.5 Summary

AI will continue to be integrated into aspects of our everyday lives that we hadn’t con-

sidered before, and the infrastructure underpinning these novel systems will mature

in kind. Only time will tell what the future may hold, but only by remaining educated

can we keep a pulse on the fascinating and powerful world surrounding artificial intel-

ligence inference.

